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The dynamics of a homogeneous turbulent flow subjected to a stable stratification
are studied by means of direct numerical simulations (DNS) and by a two-point
closure statistical EDQNM model, adapted for anisotropic flows by Cambon (1989).
The purpose of this work is to investigate the validity of the anisotropic statistical
model, which we refer to as the EDQNM2 model. The numerical simulations are of
high resolution, 2563, which permits Reynolds numbers comparable to those of recent
laboratory experiments. Thus, detailed comparisons with the wind-tunnel experiments
of Lienhardt & Van Atta (1990) and Yoon & Warhaft (1990) are also presented.

The initial condition is chosen so as to test the anisotropic closure assumption
of the EDQNM2 model. This choice yields a ratio of kinetic to potential energy of
2 : 1. This important amount of initial potential energy drives the flow dynamics
during the first Brunt–Väisälä period. Because stronger transfer rates of potential
energy than of kinetic energy occur toward small scales, the heat flux is (persistently)
counter gradient at those small scales. The loss of potential energy at large scales
is partly made up for by conversion of vertical kinetic energy, and this sets up a
down-gradient heat flux at those scales, as if no or little potential energy were present
at the initial time. Thus, common features with wind-tunnel experiments (in which
there is relatively little potential energy just behind the grid) are found. Interestingly,
only one quantity displays a similarity law in the DNS, in the EDQNM2 model and
in the experiments of Lienhardt & Van Atta (1990) and Yoon & Warhaft (1990)
as well: this is the ratio of the vertical heat flux to the dissipation rate of kinetic
energy, which can also be interpreted as an instantaneous mixing efficiency. Thus, this
parameter seems to be independent of initial flow conditions.

Our calculations simulate a longer evolution of the flow dynamics than laboratory
experiments (in which the flow develops for at most one Brunt–Väisälä period). We
find that the flow dynamics change from about 1.5 Brunt–Väisälä periods. At that
time, the heat flux collapses while the dissipation rate of kinetic energy displays a
self-similarity law attesting that this quantity becomes driven by buoyancy forces.
This permits us to link the collapse of the largest scales of the flow with the smallest
scales being influenced by the buoyancy force. We finally discuss the influence of a
geometrical confinement effect upon the above results.

The EDQNM2 model compares remarkably well with the DNS, with respect to
previous statistical models of stably stratified turbulent flows. Insufficient decor-
relation between the vertical velocity and the temperature fluctuations is however
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observed, but with no dynamical significance. The vortex part of the flow is also
overestimated by the EDQNM2 model, but the relative difference between the model
prediction and the DNS does not exceed 15 % after 6 Brunt–Väisälä periods. The
EDQNM2 model offers interesting perpectives because of its ability to predict the
dynamics of stratified flows at high Reynolds numbers. Knowledge about small-scale
behaviour will be especially useful, to build up parameterization of the subgrid scales
for instance.

1. Introduction
Flows subjected to a stable buoyancy force display a ubiquitous nature. Most of the

oceanic water mass, except for the mixed layer below the surface, is stably stratified.
In the upper atmosphere, the small-scale dynamics of the stratosphere are dominated
by internal waves that locally break (Sidi 1995). For stellar interiors, Schatzman
(1993, 1996) has proposed that a random field of linear internal waves may exist
below the convective envelope of the Sun, that would transport chemical species,
such a lithium, to the core of the star. This mechanism would account for lithium
depletion measured in the Sun, compared to the primitive abundance of this species.
Stably stratified regions are also found in cooling circuits of nuclear reactors and the
reduction of turbulent diffusion may yield very strong local temperature gradients
that damage the boundaries of the circuits.

In this paper, we shall restrict our study to homogeneous turbulent flows, subjected
to a stable temperature profile varying linearly with height. The fluid is therefore
uniformly stratified. We shall ignore the influence of any external shear, rotation or
forcing. Our purpose is to validate a two-point closure anisotropic statistical model of
the EDQNM type (eddy damped quasi-normal Markovian) for homogeneous axisym-
metric stably stratified turbulence. Validation is performed against high resolution
(2563) direct numerical simulations (DNS). The EDQNM model was developed for
homogeneous isotropic turbulence by several authors, its final form being due to
Orszag (1970, 1977) (see Lesieur 1990 for a review). It has been successfully vali-
dated (e.g. André & Lesieur 1977). The EDQNM model discussed in the present
paper is an adaptation by Cambon (Cambon 1989) of the original isotropic model
to account for the anisotropic influence of a buoyancy force on a turbulent homo-
geneous flow. This anisotropic model will be referred to as the EDQNM2 model
hereafter.

Attempts have been made in the past to extend to stably stratified turbulence
statistical models originally developed for homogeneous isotropic turbulence. Thus,
the anisotropic influence of internal waves was introduced in an EDQNM model
by two research groups, in two spatial dimensions in a vertical plane (Holloway &
Hendershot 1977; Holloway 1979; Carnevale & Frederiksen 1983). In the model of
Holloway & Hendershot, the anisotropy was taken into account in the closure model
only, the spectra depending upon the wavevector magnitude (and upon time). The
EDQNM predictions were compared to results of two-dimensional direct numerical
simulations (Holloway & Ramsden 1988) and a rough qualitative agreement was
found. In Carnevale & Frederiksen’s model, severe simplifications were used that led
to spurious conservation laws (see Holloway 1988, for a full discussion). In three
dimensions, direct interaction approximation theory was applied to stably stratified
turbulence but the complexity of the theory made it of practical use only once
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severely simplified (Sanderson, Hill & Herring 1986; Sanderson et al. 1991). One
advantage of the EDQNM2 model used in the present paper is its tractability,
though anisotropy is taken into account both in the closure assumption and in
the energy spectra: all quantities depend upon the wavevector magnitude and upon
its angle with respect to the vertical. Another approach entirely has been followed
recently by Daubner & Zeitlin (1996), using the formalism of weak interaction theory.
This formalism, normally dealing with Lagrangian variables, was developed and
successfully applied in the past to a variety of waves but not to internal gravity waves
(see Zakharov, L’vov & Falkovich 1992, for a review). For comparison purposes with
in situ and laboratory measurements, Daubner & Zeitlin (1996) derived stationary
spectra in Eulerian coordinates for internal gravity waves in a two-dimensional vertical
plane.

Predictions of the linearized Boussinesq equations have also been investigated.
This approximation coincides with the rapid distortion theory (RDT). The interest in
this linear approach is that the flow dynamics can be predicted exactly from initial
conditions through analytical expressions (possibly requiring numerical resolution, but
at a weak computational cost). As shown by Hanazaki & Hunt (1996), a remarkably
good agreement between RDT and numerical or experimental results can be obtained
in situations where the heat flux is strong. This is the case when no or little potential
energy is present at the initial time, as in grid turbulence experiments and in previous
numerical experiments, which we discuss now.

Several laboratory experiments on homogeneous unsheared stably stratified turbu-
lence have been performed. Earlier experiments dealt with salt water, either in a tow
tank (e.g. Spedding, Browand & Fincham 1996, for the most recent experiment of this
type) or in a channel with uniform mean flow (Itsweire, Helland & Van Atta 1986 and
references therein). Wind-tunnel experiments on homogeneous grid-generated turbu-
lence have been performed more recently, by Lienhardt & Van Atta (1990), Yoon
& Warhaft (1990), Thoroddsen & Van Atta (1992, 1996) and Komori & Nagata
(1996) for instance. The Prandtl number of our numerical simulations, equal to 1, is
comparable to that of these experiments (for room temperature, in air, Pr = 0.7) so
that comparison, when possible, will be made with the latter works. Thoroddsen &
Van Atta (1992, 1996) mainly report on the anisotropy of the flow, while Komori &
Nagata (1996) present a detailed investigation of the influence of the Prandtl number
upon counter-gradient events. Thus, we shall rather compare our numerical results
with the data of Lienhardt & Van Atta (1990, referred to herein as LVA) and Yoon &
Warhaft (1990, referred to herein YW), where a detailed investigation of the overall
flow dynamics is presented.

Though the experimental conditions of these two wind-tunnel experiments are
close, very different dynamics are found. As analysed by YW, these differences may
be due to the higher values of the Brunt–Väisälä frequency used in LVA’s experiments,
which lead to a quicker build-up of potential energy behind the grid. Thus, in LVA’s
experiments, a two-scale behaviour is found, buoyancy forces dominating at large
scales and dissipation at small scales. This two-scale behaviour yields remarkable
universal scaling laws, distinct for large and small scales. In YW’s work by contrast,
three different stages can be successively distinguished depending upon a turbulent
Richardson number, stratification effects progressively modifying the small-scale be-
haviour. Data are found to better collapse when plotted against this parameter.
For their most stable experiment, YW even observed a significant net counter-
gradient heat flux. It should be pointed out that both experiments were conducted
over a rather short time relative to the characteristic period of the waves, of only one
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period, because the thermal expansion coefficient of air, that relates temperature and
density fluctuations, is small. No internal waves were detected in either work during
turbulence decay, unlike salt water experiments.

Several three-dimensional numerical studies of decaying stratified homogeneous
turbulence have already been performed, within the Boussinesq approximation. These
studies mainly differ by the initial conditions. In Riley, Metcalfe & Weissman (1981),
Métais & Herring (1989) or Gerz & Schumann (1991), the initial condition is designed
as a model of the flow just behind the grid in laboratory experiments; thus, a
homogeneous and isotropic turbulent flow with no potential energy is used to initiate
the calculations. The resolution is 323 in the work of Riley et al. and 643 in the
other studies. In these works, a so-called ‘collapse’ of turbulence is found, that affects
both the dynamical properties of the flow (e.g. reduction of energy transfers), and
its structure (inhibition of vertical scales growth). The influence of a forcing was
examined in Herring & Métais (1989) and in Ramsden & Holloway (1992). In Métais
& Lesieur (1992), large-eddy simulations are compared to 1283 DNS for isotropic
and stably stratified turbulence. The second group of simulations is complementary to
the first: the evolution of a stratified flow initiated by a reservoir of potential energy
only is addressed. In Chasnov (1996), similarity states at high Reynolds number were
derived and tested against large-eddy simulations. In Gerz & Yamazaki (1993), results
of 643 and 1283 DNS are presented and analysed from the point of view of oceanic
turbulence. Lagrangian properties of stably stratified turbulence have been recently
studied by Kimura & Herring (1996), using 1283 DNS.

In the present paper, another initial condition is used, in which both initial kinetic
and potential energies are non-zero, in a ratio 2 : 1. As detailed in § 4 below, this choice
stems from the comparison with the EDQNM2 model: it yields a flow dynamics nearly
driven by the nonlinear terms of the equations, which therefore are most sensitive to
the closure assumption (which relates triple correlations of the fields to double ones).
This initial condition also yields a flow dynamics dominated by the internal wave
part and this is again a severe situation for testing the EDQNM2 model, which was
originally designed for isotropic turbulent flows. The calculations are conducted over
a much longer time than laboratory experiments, of 6 Brunt–Väisälä periods.

A simplified version of this EDQNM2 model has already been tested against low-
resolution (643) DNS (van Haren, Staquet & Cambon 1996). This simplified model
will be referred to as the EDQNM1 model hereafter. The simplification consists in
dropping the contribution of the stable stratification in the closure assumption for
the triple correlations, while retaining the influence of stable stratification on the flow
dynamics through the linear terms in the equations. Hence, the closure assumption is
formally identical to that used in the classical EDQNM model for isotropic turbulence.
A rather good agreement between theory and DNS was still found, despite the fact
that energy transfers toward small scales were too large in the EDQNM1 model,
because of this simplification. In the present paper, the predictions of the full model
are tested against DNS, using the initial condition mentioned above.

Finally, note that our study is very different from the recent one by Herr, Wang
& Collins (1996) who examine the behaviour of a passive scalar with uniform mean
gradient by comparing direct numerical simulations and an EDQNM model. In that
case, the flow field remains isotropic for all time. No scalar feedback on the velocity
nor internal wave effects are present in the flow. Thus, in that EDQNM model,
the closure can be operated independently in the equations for the kinetic energy
spectrum and for the scalar variance spectrum.

In the next section, the equations of motions are detailed in physical and Fourier
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space. The EDQNM2 model is described in § 3, the detailed form of the transfer terms
in this model and in the simplified EDQNM1 version being given in the Appendix
(more details can be found in Cambon 1989; van Haren 1993 and Godeferd &
Cambon 1994). The numerical method used in the DNS is described in § 4, along with
the initial conditions and the physical parameters of the flow. In the present paper,
comparison between the EDQNM2 model and DNS focuses on the temporal and
spectral behaviour of the energy of the flow and of its components (§ 5). Comparison
with the experimental works of LVA (1990) and YW (1990) are also presented.

Our main results are as follows. The early stage of the flow dynamics, for times
smaller than ' 1.5 Brunt–Väisälä periods, is controlled by the amount of initial
potential energy. Kinetic and potential energy are transferred toward small scales,
at a higher rate for the latter quantity. Thus, the total energy (kinetic+potential)
decays at a higher rate than its isotropic counterpart. The loss of potential energy at
large scales due to nonlinear transfers toward small scales is partly made up for by
conversion of vertical kinetic energy, as if no or little potential energy were present at
the initial time. Thus, common features with wind-tunnel experiments (in which there
is relatively little potential energy just behind the grid) are found. At small scales, the
excess of potential energy (relative to the initial equipartition in the ‘wave’ part of the
flow) drives a counter-gradient heat flux, which persists all along the flow evolution.
This counter-gradient flux exists despite the low value of the Prandtl number of our
calculations (= 1) and is driven by our initial condition. However, we show that the
small scales of the flow are still not dominated by buoyancy during this first stage.

From about ' 1.5 Brunt–Väisälä periods, the large scales of the flow collapse and
all scales of motions, up to the smallest, become controlled by buoyancy effects. As a
consequence, clear similarity laws, for different values of the Brunt–Väisälä frequency
and the viscosity, can be inferred from the data, for the vertical kinetic energy and
for the dissipation rate of kinetic energy.

A very good agreement with the EDQNM2 model is found in general. Two excep-
tions are the vortex part of the flow, made up of quasi-two-dimensional motions that
emerge from turbulence from ' 1.5 Brunt–Väisälä periods, and an insufficient decor-
relation between the vertical velocity component and the temperature fluctuation.
These discrepancies are however weak enough to be of no dynamical significance.

A detailed study of the anisotropic behaviour of the flow, at large and small scales,
and of its mixing properties will be presented in a subsequent paper (Godeferd &
Staquet 1998).

2. Equations of stably stratified homogeneous turbulence
2.1. Basic equations

Let (x, y, z) be a Cartesian coordinate system in a Galilean frame of reference, z being
directed vertically upwards. The Boussinesq equations for a homogeneous stably
stratified non-rotating flow are(

∂

∂t
+ uj

∂

∂xj
− ν∇2

)
ui +

∂p

∂xi
= Tδi3, (1a)

(
∂

∂t
+ uj

∂

∂xj
− κ∇2

)
T = −N2u3, (1b)

∂ui

∂xi
= 0. (1c)
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The components of the velocity field will be denoted (u1, u2, u3) throughout the
paper. T (x, t) denotes the temperature fluctuations about a background temperature
T0 + Tb(z) of an hydrostatic stationary reference state. Note that T (x, t) has been
rescaled as an acceleration, using the factor βg (βgT is the dimensional temperature);
β is the thermal expansion coefficient and g is the acceleration due to gravity. Equation
(1 c) represents the mass conservation and, in the Boussinesq approximation, amounts
to assuming that the flow is incompressible. The temperature diffusivity κ is taken
equal to the kinematic viscosity ν in the temperature equation; thus the Prandtl
number is equal to 1. In addition to ν and κ, a third physical parameter comes into
play in the equations, N, that couples the velocity and temperature fields. N is the
Brunt–Väisälä frequency:

N =

(
βg
Tb

dz

)1/2

. (2)

The Brunt–Väisälä period 2π/N will be denoted TBV .
When nonlinear interactions are neglected in (1), the linear regime of internal waves

is recovered. The eigenmodes of the resulting equations can be computed and three
frequencies are obtained. Two of them verify the dispersion relation of internal waves,
ω = ±N sin θ, and are associated with propagating internal waves, the wavevector of
which makes an angle θ to the vertical; the third frequency is ω = 0 and is associated
with a vortex (or non-propagating) motion (see e.g. Muller et al. 1986, for a full
discussion).

Making use of the homogeneity hypothesis, one can Fourier transform all quantities
that depend on the spatial variable x, and get the spectral (Fourier) space equations
for the corresponding Fourier components: û(k, t) for the velocity u, and T̂ (k, t) for the
temperature T , k being the wavevector. The incompressibility of the flow expressed
in Fourier space is k · û = 0, so that the velocity vector in Fourier space is orthogonal
to the wavevector. Equations (1 a) and (1 b) become, in Fourier space,(

∂

∂t
+ νk2

)
ûi(k)− Pi3(k, t)T̂ (k, t) = −i klPin(k)

∫
k+p+q=0

ûn(p, t)ûl(q, t) d3p,(
∂

∂t
+ νk2

)
T̂ (k) +N2û3(k, t) = −i kl

∫
k+p+q=0

ûl(p, t)T̂ (q, t) d3p.

 (3)

Pij = δij − kikj/k2 is the projection operator onto the plane orthogonal to û(k), δij
denotes the Kronecker tensor and i2 = −1.

2.2. Wave/vortex decomposition

We use the following decomposition in Fourier space:

ûi = φ̂1e1
i + φ̂2e2

i , (4)

where the unit vectors e1 and e2 are defined as follows. Since u is perpendicular to k, a
local frame of reference is defined in Fourier space, made up of the wavevector k and
of two unit vectors lying in a plane, Π say, perpendicular to k. One of these vectors,
e1(k), is taken horizontal so that the second vector, e2(k), lies along the intersection of
Π and a vertical plane. This frame is usually referred to as the Craya–Herring frame
and was proposed by Craya (1958) and Herring (1974) for axisymmetric turbulence.
The two unit vectors are defined by

e1(k) = (k × n)/|k × n|, e2(k) = (k × e1)/|k × e1| , (5)
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Figure 1. The Craya–Herring frame of reference (e1, e2, k). The vector e1 is horizontal and
perpendicular to the plane of figure.

and the last one, e3(k) = k/k, along k, completes the frame. The vector n represents
the vertical unit vector.

Note that the direction of e2 is the direction of steepest descent in the plane Π . This
direction is exactly the one along which fluid particles oscillate in an internal wave
(see figure 1). Thus, for a stably stratified flow, in the linear limit, the component of

û along e2, φ̂2, coincides with the internal wave part. The component along e1 is the
vortex part.

Regardless of physical considerations, decomposition (4) may simply be considered
as a mathematical one and applied to a velocity field in any flow regime. This will be
done here, for the whole duration of the simulated flows (from a turbulent regime to
a weakly nonlinear one). However, whatever the flow stage, we shall improperly refer

to φ̂1e1
i as the vortex part of the flow and to φ̂2e2

i as its internal wave part.
This decomposition can equivalently be formulated in physical space. Indeed, it

amounts to splitting the velocity u into its horizontal and vertical components and to
applying Helmholtz decomposition to the former component:

u = ∇h × ψn+ ∇hζ + u3n (6)

where ∇h represents the gradient operator in a horizontal plane. This decomposition
is often used for compressible flows. As shown by Riley et al. (1981), for a stably
stratified flow in the linear limit, the last two terms of (6) define the velocity field
of the internal wave part while ∇h × ψn defines the non-propagating or vortex part
of the flow. The latter part is thus characterized by its containing all of the vertical
vorticity of the flow while the internal wave part contains all of the vertical velocity.
The above decomposition can be extended to a weakly nonlinear regime by replacing
the horizontal planes by (slightly tilted) isopycnals (Staquet & Riley 1989).

The scalar field ψ uniquely defines the vortex part of the flow. As well, the scalar field
ζ uniquely defines the wave part of the flow when the velocity field is incompressible,
since, in this case, u3 and ζ are related by

∇2
hζ = −∂u3

∂x3

, (7)

where ∇2
h denotes the Laplacian operator in a horizontal plane. The latter result

is consistent with a decomposition proposed by Hart (1981) in physical space, in
terms of a single potential as well, for any velocity field satisfying the linearized
incompressible Boussinesq equations.

Finally, it can be easily shown that decomposition (4) is equivalent to (6) for
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an incompressible flow. Indeed, components φ̂1 and φ̂2 are related to the Fourier

transforms of the scalar fields ψ̂ and ζ̂ by

φ̂1 = ikhψ̂, φ̂2 = i
khk

kz
ζ̂ = − k

kh
û3. (8)

3. The EDQNM2 model for stratified turbulence
3.1. Basics of the anisotropic EDQNM closure derivation

In the EDQNM model, the hierarchy of equations for correlations of the velocity field
at successive order is closed at third order, by assuming that the velocity distribution is
not far from Gaussian. More precisely, the fourth-order correlations are expressed in
terms of second-order ones, the fourth-order cumulant being modelled as a damping
term of the third-order correlations. The reader is referred to classical works in the
literature for details on the EDQNM model in the isotropic case (Orszag 1970;
Herring & Kraichnan 1971; Lesieur 1990). We show hereafter the main lines of the
derivation of an anisotropic version and adopt a formal presentation for clarity.

Cambon (1989) has proposed a general way of obtaining the statistical EDQNM
closure for a velocity equation – or another vector variable such as the velocity–
temperature one introduced in the following section – whereof the linear operator
includes an additional term with respect to the dissipation term of the Navier–Stokes
equations. Such a generic equation may be written as

˙̂v + Lv̂ =

∫
k+p+q=0

M(k, p, q)v̂(p)v̂(q) d3p︸ ︷︷ ︸
b(k)

, (9)

where the time dependency has not been explicitly included in the right-hand side. The
overdot indicates a time derivative. The tensor M contains the interaction coefficients
between the Fourier modes v̂(p) and v̂(q), and represents the nonlinear terms. The
solution of this equation can be written with the help of the Green’s function of the
linear operator L, namely G , that allows one to obtain the solution for the linear part
of equation (9), given an initial condition v̂(t0). Namely, this yields

v̂(k, t) = G(k, t− t0)v̂(k, t0) +

∫
G(k, t− t′)b(k, t′) dt′ (10)

where b is the right-hand-side of equation (9). Given the formal solution (10) at any
time, it is easy to obtain the solution of any particular nth-order moment V (n) of
variable v at any time t, owing to the fact that the Green’s function for the linearized
equation of this moment is but a product of n Green’s functions G . Each of these
depends on a different wavevector, that lies among the n wavevectors on which the nth
order moment depends. Thus, from the evolution equation of the triple correlations
of v̂, which we write in a symbolic form:

V̇ (3) +
∑

LV (3) = V (4) , (11)

one may obtain the formal solution for triple correlations in terms of the fourth-order
ones. Here, the summation sign indicates sums over all possible permutations of
indices of the second-order tensor L and the third-order one V (3), i.e. representing
different components of these tensors. This symbolic notation is used throughout this
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section for denoting summations over the order of indices, such as the quasi-normal
development of equation (12).

The modelling comes in at this step, where V (4) is written in terms of the second-
order moments, as in the isotropic EDQNM model, assuming that the distribution
of the random variable v is close to a Gaussian one. Let us point out here that, as
an extra assumption, we suppose that this property is also verified by the temperature
variable, in addition to the velocity one. In so doing, we get the quasi-normal (QN)
part of the closure model. As in the isotropic model, the eddy-damping (ED) part
comes from a departure from the Gaussian development and takes into account the
non-zero triple correlations, here again extending the argument to the temperature
field. The quasi-Gaussian decomposition is

V (4) =
∑

V (2)V (2) − µ(k)V (3) (12)

where µ is the eddy damping rate of the triple correlations by the fourth-order cumu-
lant. One of the key issues of the EDQNM model is the choice of this damping rate.

In our model, the classical damping rate is used for variable v, µ(k) = A
∫ k

0
p2E(p) dp,

that contains A = 0.366, the only adjusted – once and for all – constant of the model,
to recover the Kolmogorov constant in the most simple test case (André & Lesieur
1977). The spectrum E(k) is the spherically averaged kinetic energy spectrum. Putting
(12) in (11) yields the equation for the third-order correlations:

V̇ (3) +
(∑

L+ µ
)
V (3) =

∑
V (2)V (2) , (13)

whereof the solution is

V (3)(k, p, q, t) = V (3)(k, p, q, t0)+

∫ t

t0

dt′
∫
k+p+q=0

[
G+M

]
(k)
[
G+V (2)

]
(p)
[
G+V (2)

]
(q) d3p

(14)

where the dependence of the right-hand-side terms on t and t′ is skipped in our
notation. The function G+ in the above equation is not exactly G , since the linear
eddy damping term in (12) introduces an extra part to the Green’s function G , such
that

G+(k, t, t′) = G(k, t− t′) exp

[
−
∫ t′

t

µ(k, t′′) dt′′

]
. (15)

The ‘M’ (for Markovian) of the EDQNM model refers to the way the time integration
in equation (14) is performed, for dealing with the initial conditions. No difference
with the original Markovian procedure has been introduced in our model. Finally,
the solution (14) for V (3) in the evolution equation for V (2) putting

V̇ (2) +
∑

LV (2) = V (3), (16)

provides the closed equations for the double correlations. Obtaining the explicit model
in terms of the wave part, vortex part, and temperature spectra is only a matter of
switching to the local Craya–Herring reference frame.

The above constitutes a synoptic presentation of the way anisotropic EDQNM
models can be constructed, not only considering the Boussinesq equations, but also
including a Coriolis force (rotating turbulence) or an explicit Joule dissipation term
(MHD turbulence) for instance, all of which appear as additional linear operators in
the Navier–Stokes equations (Cambon & Godeferd 1993).
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3.2. Formulation of the EDQNM2 model in the Craya–Herring frame

For stably stratified flows within the Boussinesq equations, the variable v̂(k, t) is a
combination of the velocity and temperature fields:

v̂i(k, t) = ûi(k, t) + i
ki

k

T̂ (k, t)

N
. (17)

Note that the scaled temperature T̂ /N is considered to lie along the wavevector k so
that v̂ is a three-component vector in Fourier space. The third component is denoted

φ̂3:

φ̂3
i (k, t) =

T̂ (k, t)

N
. (18)

Half the variance φ̂3
i φ̂

3∗
i /2 is simply the spectral density of the potential energy of

the flow. The variable v̂ satisfies the property v̂∗i v̂i/2 = û∗i ûi/2 + T̂ ∗T̂ /(2N2), that is,
half the variance of v̂ is the spectral density of the total energy (kinetic+potential).

As just seen, the EDQNM2 model is expressed in terms of the double correlations
V (2) of v̂. The projection of V (2) onto the different axes of the Craya–Herring frame
provides the different correlation spectra for the components of v̂ in the local frame:

1
2
eui V

(2)
ij e

v
j =

 Φ1 0 0
0 Φ2 Ψ ∗

0 Ψ Φ3

 ; (19)

Φi(k, t) =
〈
φ̂i∗φ̂i

〉
/2 is the energy spectrum of the vortex part (i = 1), of the wave part

(i = 2) and of the potential energy (i = 3). Ψ =
〈
φ̂2∗φ̂3

〉
/2 is the correlation spectrum.

〈 〉 denotes an ensemble average. The integration along the vertical direction of the
real part of Ψ , denoted ΨR , leads to the vertical heat flux

1
2
〈wT 〉 = −N

∫
ΨR(k) sin θkd

3k. (20)

Using equations (14), (15) and (16), we obtain the EDQNM2 model within the
Craya–Herring frame:

[∂/∂t+ 2νk2]Φ1(k, t) =T1(k, t), (21)

[∂/∂t+ 2νk2]Φ2(k, t) +N sin θkΨR(k, t) =T2(k, t), (22)

[∂/∂t+ 2νk2]Φ3(k, t)−N sin θkΨR(k, t) =T3(k, t), (23)

[∂/∂t+ 2νk2]ΨR(k, t)− 2N sin θk[Φ2(k, t)− Φ3(k, t)] =TΨR (k, t), (24)

[∂/∂t+ 2νk2]ΨI (k, t) =TΨI (k, t) . (25)

The equation for the imaginary part of the velocity–temperature correlation ΨI is
totally decoupled from the others, and leads to a constant zero spectrum ΨI (k), if
it is initially zero. We shall make this assumption in the following and thus ignore
equation (25). Equations (21)–(24) are our EDQNM2 model.

The modelled transfer terms in the right-hand sides of equations (21)–(24) are
denoted with script letter T. Their full expression in provided in the Appendix. Note
that the left-hand sides of equations (21)–(24) are the same as those appearing in the
corresponding exact equations, using the wave and vortex spectra formulation. The
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only difference lies in the nonlinear transfer terms that would contain the unmodelled
third-order correlations.

The modelled transfer terms are of the form

Tij(k, t) =
∑

(εε′ε′′)∈{0,±1}3
Tεε′ε′′

ij (k, t) (26)

with

Tεε′ε′′

ij (k, t) =

∫
k+p+q=0

Sεε
′ε′′

ij (k, p, q)

τ−1
kpq − iN(ε sin θk + ε′ sin θp + ε′′ sin θq)

d3p . (27)

The tensor Sεε
′ε′′ contains many terms, with geometrical coefficients and the energy

spectra. The transfer termsTεε′ε′′

ij are obtained by simple projection operations on the
Craya–Herring frame.

The decomposition of the nonlinear transfer terms in (26) and (27) allows one to
identify the various contributions, coming from different types of interactions in the
flow, among vortex parts, wave parts, or between wave and vortex parts. Indeed, when
the indices ε, ε′ or ε′′ are equal to +1 or −1, the part of the motion that is involved
in the triadic interaction is internal waves with wavevectors k, p and q, propagating
either in the one direction or its opposite, depending on the sign of the index. For the
zero-valued indices, the vortex part is considered in the triadic interaction, with the
corresponding wavevector.

Definition (27) shows that the effective damping rate of the triple correlations is

τ−1
kpq − iN(ε sin θk + ε′ sin θp + ε′′ sin θq). (28)

Its real part τ−1
kpq is the damping rate of the triple correlations that comes from the

application of the isotropic closure assumption to v (see previous section): τ−1
kpq =

ν(p2 +q2 +k2) +µ(k) +µ(p) +µ(q). The imaginary part results from the presence of an
additional term – due to the stable stratification – in the linear operator acting upon
v. It is important to underline that this imaginary part appears naturally from our
way of deriving the model, and not from any extra assumption. The triple product of
Green’s functions in equation (14) leads to the appearance of the resonance condition
for wave interactions, exactly as it appears in a weakly nonlinear analysis dealing
with a unique triad of vectors k, p, q (Lelong & Riley 1991). The only difference in
the two approaches, at this level, comes from our dealing with full turbulence, so that
we have to integrate the triadic interactions over the complete spectrum of the flow
velocity field.

Thus, the level of the energy transfer relative to the isotropic situation depends on
the value of N(ε sin θk + ε′ sin θp + ε′′ sin θq). If the resonance condition is met, i.e. if
the previous sum of frequencies is zero, the triple correlations are damped with the
same rate as in isotropic turbulence. The triads then involve either vortex motions
only, resonant internal waves only, or internal waves resonantly interacting with one
vortex (Lelong & Riley 1991). On the other hand, when the resonance condition is
not fulfilled, the stratification acts as a scrambling effect proportional to N, since the
corresponding term is purely imaginary. It follows that energy transfers are (mainly)
ensured by resonant interactions. Note also that, since we deal with continuous spectra
of statistical turbulence, the integral of all contributing interactions from different
scales and modes of motion in the flow is computed to get the evolution of the
spectra.
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3.3. Notation

To avoid confusion, we shall denote by (φ1(k, t), φ2(k, t)) the components of u(k, t)
in Fourier space; by (Φ1(k, t), Φ2(k, t)) the variance – or kinetic energy spectrum – of
each component; by (Φ1(k, t), Φ2(k, t)) the spherically averaged variance – or energy
density spectrum – of each component; and by (ΦV (t), ΦW (t)) the volume-averaged
kinetic energy in the vortex and wave parts. As well, φ3(k, t), Φ3(k, t), Φ3(k, t) and
Ep will denote respectively the third component of v(k, t), its variance (or potential
energy spectrum), the potential energy density spectrum and the volume averaged
potential energy.

4. Numerical method, initial condition and physical parameters
4.1. Numerical method

4.1.1. Direct numerical simulations

The system of equations (1) has been solved with periodic boundary conditions
in all three directions, using a pseudo-spectral method. In order to ensure numerical
stability, the nonlinear terms are rewritten in rotation form prior to solving, using the
identity (u · ∇)u = ω×u+ 1

2
∇|u2| (e.g. Canuto et al. 1988, pp. 116 and 208); ω = ∇×u

is the vorticity. In a pseudo-spectral method, the spatial derivatives are computed in
Fourier space while the nonlinear terms are computed in physical space. A standard
truncation procedure is applied to the fields before computing the nonlinear product
so as to avoid aliasing effects. Time marching is done using a third-order Adams–
Bashforth scheme, and the viscous term is integrated exactly using the new variable
u(k) exp(νk2t). The computational domain is a cubic box of side 2π, 4π or 8π (see
table 1). The resolution is 2563 and comparison with simulations of lower resolution,
1283, will be made.

4.1.2. Numerical resolution of the EDQNM2 model

To solve numerically the system of equations (21) – (24), we first reduce the
last three equations into two equations, for an oscillating (complex) quantity Z =
Φ2−Φ3+iΨR and for a non-oscillating (real) quantity Φ2+Φ3. The explicit stratification
term becomes thus isolated into one equation, for Z . The linear terms in all equations
are solved exactly by using integrating factors that include either both the viscous
decay and the stratification term, as in the Z equation, or only the viscous dissipation
term, as in the equations for the non-oscillating quantities Φ1 and Φ2 + Φ3. The ∂/∂t
remaining time-dependent terms are then integrated by an explicit Euler time scheme.
In the isotropic case, we have checked that no significant improvement in accuracy
can be obtained over the time intervals of interest, by increasing the order of the
time-advancement scheme (we used a third-order Adams–Bashforth scheme).

The numerical calculation of the triadic integrals in equation (27) is performed
as a discretized integral in terms of spherical coordinates, i.e. a summation over
all wavenumbers and angles, with a linear interpolation to compute the spectra at
wavevector q (q = −k−p with given discretized k and p). The minimum and maximum
wavenumbers are the same as in the DNS: for instance, for a 2563 simulation of
domain side n2π, kmin = 1/n and 0 6 k/kmin 6 128. The angle of k with vertical is
discretized into 19 angles from 0 to π/2.

The EDQNM2 calculations are easily parallelized. The time advancement scheme
being explicit, the discretized equations (21)–(24) amount to expressing the spectra
at iteration (n + 1) as a function of the known spectra at iteration n, through linear
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and nonlinear terms. The parallelization process uses the fact that these terms depend
upon the wavevector k so that their computation can be dispatched over different
computational nodes. Theoretically, one could use as many computational nodes as
discretized wavenumbers, with a speedup almost as high as the number of nodes.
Most of the EDQNM2 results presented in the following have been obtained on a
cluster of eight workstations.

4.2. Initial condition

The procedure we use to initialize the velocity and density fields of the stably stratified
flow in the DNS has now become classical (Orszag & Patterson 1972). In a preliminary
stage, a homogeneous turbulent non-stratified flow is created via a so-called ‘isotropic
pre-simulation’. This DNS is initialized with a narrowband spectrum of kinetic energy
density

E(k) = 16

(
2

π

)1/2

u2
0k

4 exp

[
−2

(
k

k0

)2
]
. (29)

One realization of the velocity field is obtained by defining this field in Fourier
space: for each wavevector k, the amplitude is deduced from E(k) and the phase is
initialized by a random generator with uniform distribution. In the DNS presented
in this paper, the peak of the spectrum is located at wavenumber k0 = 4.76 (the
side of the computational box being 2π, 4π or 8π) and its magnitude is such that

u2
0 ≡ u2

1 = u2
2 = u2

3 ' 1, where the overbar denotes a volume average. The initial triple
correlations for the velocity field are therefore zero. This DNS is carried out up to the
time, denoted t0, at which three conditions are satisfied: energy has been transferred
to the smallest scales; the skewness factor is about 0.4; and ΦV = ΦW (the spherically
averaged energy density spectra Φ1(k, t0) and Φ2(k, t0) are thus very close, for any k).
Therefore, the flow is close to a homogeneous isotropic turbulent flow. In practice, t0
varies between 0.75 and 0.94 for the different calculations.

A stably stratified flow is created at t = t0 by setting N to a non-zero value. The
potential energy at that time is chosen so that, for any k, Φ3(k, t0) = Φ2(k, t0). As said
in Introduction, this choice is motivated by the validation of the closure assumption
of the EDQNM2 model. Indeed, equation (24) shows that, in this case, the spectrum
ψR(k, t) becomes driven by the nonlinear transfer termTΨR , at least in the early stage
of the flow. Therefore, if ΨR(k, t) is zero at t = t0, the temporal evolution of Φ2 and
Φ3 will be mainly controlled by the nonlinear transfer terms T2 and T3 respectively.
We therefore expect that ψR(k, t), if zero at t = t0, will remain weaker during this
early stage than for the usual initial conditions made a reservoir of either kinetic
energy or potential energy. The flow dynamics in our calculations should therefore
be most sensitive to the modelling of the nonlinear transfer terms, which involves the
closure assumption.

The comparison between the EDQNM2 model and the DNS is initiated as follows.
The DNS spectra Φ1(k), Φ2(k) and Φ3(k) = Φ2(k) at t = t0 are used to initialize the
EDQNM2 model (ΨR is set to zero at that time in the model). In the numerical
simulations, a deterministic temperature field is defined in Fourier space from Φ3(k),
with the addition of random phases. The physical parameters (the viscosity ν and
the Brunt–Väisälä frequency N) are the same in the EDQNM2 model and in the
simulations. We recall that Pr = 1 for all calculations.

A DNS corresponds to a given realization of the flow while the predictions of the
statistical EDQNM2 model are those for an ensemble average. Before proceeding
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Duration of Side of the Frt Reλ
Run Resolution run (from t0) ν N computational domain at t = t0 at t = t0

A 2563 3TBV 1/400 π 2π 0.38 58
B 2563 3TBV 1/400 π 2π 0.38 58
C 2563 3TBV 1/400 π 2π 0.38 58
D 2563 3TBV 1/400 π 2π 0.38 58

R0 2563 6TBV 1/300 0 4π NA 45
R1 2563 6TBV 1/300 π/2 4π 0.88 45
R2 2563 6TBV 1/300 π 4π 0.44 45
R3 2563 6TBV 1/500 π 4π 0.45 57
R4 2563 6TBV 1/150 π 8π 0.45 32

r0 1283 6TBV 1/150 0 4π NA 32
r1 1283 6TBV 1/150 π/2 4π 0.91 32
r2 1283 6TBV 1/150 π 4π 0.45 32

c2 1283 3TBV 1/300 π 2π 0.33 56

Table 1. Sets of parameters for the different runs of DNS and of EDQNM2 calculations. ν is
the kinematic viscosity and N the Brunt–Väisälä frequency. t0 is the time at which N is set to a
non-zero value in the pre-simulation of isotropic homogeneous turbulence. Frt, defined by (33) is a
turbulent Froude number, while Reλ, defined by (34), is a Reynolds number based upon the Taylor
microscale.

to the comparison between DNS and EDQNM2, it is necessary to examine the
variability of the DNS results as a function of the random phase realizations (used
to initialize the velocity field at t = 0 and the temperature field at t = t0). For this
purpose, four 2563 DNS have been run over three Brunt–Väisälä periods. These DNS
are denoted A, B, C, and D in table 1 and their features are described there. We
solely focus upon the fact that simulations A, B and C stem from the same isotropic
pre-simulation and differ in the realization of the temperature field at t = t0, while
the velocity field in simulation D is initiated by a different isotropic pre-simulation.
In figure 2 (a), the total energy (kinetic+potential) is plotted as a function of time.
The four curves remain very close as time elapses, the maximum relative difference
reaching 3 % only after 3TBV . The origin of this relative difference is clarified when
the kinetic energy of the vortex part ΦV and of the wave part ΦW are examined
(figures 2 (b) and 2 (c)). For the former quantity, the four curves almost superpose,
the relative difference being at most 1%. Figure 2 (c) shows that the differences in
the total energy should be attributed to the latter quantity, namely the wave part,
simply because the oscillations of the internal waves are not in phase, due to the
different random realizations of either the velocity field initiating the isotropic pre-
simulation, or the temperature field at t = t0. However, these minor differences are
not dynamically significant. Thus, a single DNS realization can be compared to an
EDQNM2 calculation when volume-averaged energies are to be studied.

In figure 2 (d), the normalized heat flux (correlation coefficient between the vertical
velocity and the temperature fluctuation) is plotted for the four DNS. The four curves
display about the same amplitude but their phases progressively shift from about one
Brunt–Väisälä period (as was already visible in figure 2c) because of the different
random realizations. The signals lose their relative coherence after ' 1.5TBV . Hence,
no attention should be paid to the phase of the wave oscillations when comparison
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Figure 2. DNS results. Time evolution for runs A, B, C and D of (a) the total energy (ki-
netic+potential); (b) the vortex kinetic energy; (c) the wave kinetic energy; (d) the normalized
vertical heat flux. t0 is the initial time of the calculations with stable stratification. Time is
non-dimensionalized by the Brunt–Väisälä period TBV = 2π/N. —— run A; - - - - run B; – - –
run C; – – – – run D.

with the EDQNM2 model will be made. Only the amplitude of the oscillations should
be considered.

4.3. Physical parameters

The calculations discussed in the present paper are listed in table 1. As already noted,
all stratified DNS are initialized by an isotropic pre-simulation. The viscosity is kept
constant and has the same value in the pre-simulation and subsequent stratified DNS.
This value is chosen so that the Kolmogorov scale

η = (ν3/ε)1/4, (30)

is a few times less than the grid size ds at t = t0: η = α ds, with α < 1; ε is the volume-
averaged dissipation rate of kinetic energy. The Kolmogoroff scale characterizes the
scale at which energy is dissipated and, in practice, α = 1/3 ensures that the smallest
scales of the flow are properly resolved at t = t0. The latter criterion will also be true
at any subsequent time since η increases as time elapses (see figure 4 b). Indeed, in a
stably stratified flow, the transfer rates of (kinetic and potential) energy toward small
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scales decrease as time elapses (e.g. Riley et al. 1981; Kimura & Herring 1996) and
so does also ε, consequently. Note that the equation for the total energy is always
satisfied to better than 1% from t = t0 with the value of the viscosity obtained with
this criterion.

Two stably stratified DNS will be extensively discussed in this paper, referred to
as R1 and R2 in table 1. These DNS solely differ by the value of the Brunt–Väisälä
frequency, either equal to π/2 or π. From a dynamical point of view, the Froude
number Fr = U/NL accounts for the importance of nonlinear effects, estimated by
U/L, relative to stratification effects, estimated by N. U and L are characteristic
velocity and length scales, which are specified below. Whatever the initial value of
the Froude number in a stably stratified decaying turbulent flow, it always decreases
below 1 as time elapses indicating that the flow supports successively all regimes,
from a strongly nonlinear regime (Fr > 1) to a weakly nonlinear one (Fr � 1). The
reason is that the characteristic time scale of nonlinear effects L/U increases with
time, because the kinetic energy decreases, so that L/U becomes much larger than
N−1 as time elapses. In runs R1 and R2, the values chosen for N yield a value of the
Froude number of order 1 at t = t0, as we show now, so that stratification effects are
already strong at that time.

There are different ways to define the Froude number but it is generally expressed
as the ratio of two length scales (e.g. Hopfinger 1987; LVA; YW). One of them is the
buoyancy length scale

Lb = (u2
3)

1/2/N (31)

which is the greatest distance a fluid particle can move vertically against the temper-
ature gradient. In the present case, Lb will be compared to an integral length scale
L

L = (u2
1)

3/2/ε, (32)

so that

Frt = Lb/L (33)

is usually referred to as a turbulent – or overturning – Froude number. In equation
(32), L represents the size of the most energetic eddies (this definition stems from the
equation for the kinetic energy in an isotropic flow).
Frt computed by DNS for runs R1 and R2 is plotted in figure 3 (a). The Froude

number decays from about 1 down to 0.025, indicating that a quasi-linear regime
is reached at 6TBV . The integral length scale L increases by a factor 3 during the
simulations (not shown) so that the decay of Frt reflects a strong decrease of the
vertical kinetic energy. Both curves in figure 3 (a) start to match from about 0.5TBV ,
indicating that the Froude number behaviour becomes driven by buoyancy effects
from this time on. This result is in agreement with experimental results of YW and
LVA: the turbulent Froude number is compared for both sets of experiments in YW’s
article (their figure 18) and all data collapse on the same curve from ' 0.5TBV . The
value found by these authors at 0.5TBV is reproduced for comparison in our figure
3 (a). This value lies close to our curves, which suggests that the Froude number
evolution also quickly becomes independent of the initial condition.
Frt predicted by the EDQNM2 model and computed from the DNS is plotted in

figure 3 (b), for run R2. A very good agreement is found between both evolutions,
apart from a slight underestimation by the EDQNM2 model (by 20% at most). As
shown below, this discrepancy stems from the energy in the u1 component, which is
overestimated by the EDQNM2 model.
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Figure 3. Time evolution of the Froude number Frt (defined by (33)). (a) DNS results. ——, run
R1; - - - -, run R2; ◦ indicates one value extracted from the experiments of Yoon & Warhaft (1990)
and Lienhardt & Van Atta (1990). (b) Run R2 only. ——, DNS; - - - -, EDQNM2 model.

The second dynamical parameter of the flow is a Reynolds number. Its definition
is most often based upon the Taylor microscale λ

Reλ = (u2
1)

1/2λ/ν, (34)

with

λ = (10νEk/ε)
1/2. (35)

Ek is the volume-averaged kinetic energy 1
2

∑
i u

2
i . Our high-resolution numerical

simulations permit the attainment of the same initial value of Reλ as in the wind
tunnel experiments of YW and LVA, which is about 40. λ is about constant during the
first half-Brunt–Väisälä period (see figure 4 b) so that the strong decay of Reλ reflects

that of u2
1 (due to nonlinear transfers toward small scales). Reλ seems to eventually

reach an asymptotic constant value from 3TBV , close to 30 for run R2.
Figure 4 (a) shows that the EDQNM2 model overestimates Reλ by about 6%.

However, λ is remarkably well predicted by the EDQNM2 model (see figure 4 b). The
discrepancy in Reλ thus stems again from the energy in the u1 component, as for the
turbulent Froude number discussed above.
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Figure 4. Run R2. (a) Reynolds number Reλ based on the Taylor microscale λ: ——, DNS; - - - -,
EDQNM2 model. (b) Taylor microscale λ (top curves) and Kolmogorov microscale η (bottom
curves): ——, DNS; - - - -, EDQNM2 model.

The Kolmogorov scale defined by (30) is also displayed for the EDQNM2 model
and the DNS, in figure 4 (b). A very good agreement is found up to 6TBV , implying
that both approaches predict the same dissipation rate of kinetic energy. A detailed
study of ε is presented in § 5.5.

5. Energetics of the flow: EDQNM2 model versus DNS
5.1. Total energy

5.1.1. DNS results

The decay of the total energy (kinetic+potential) averaged over the computational
domain E(t) is examined in figure 5 (a), for N = π. The isotropic pre-simulation has
been continued beyond the time t0 and its volume-averaged kinetic energy is plotted
for comparison. The total energy is also plotted for stratified DNS having different
values of the viscosity, so that the influence of this parameter can be estimated. All
energies are normalized by their respective value at t = t0.

Figure 5 (a) shows that the overall decay of the total energy displays two stages.
During the first Brunt–Väisälä period, the decay rate of the total energy is greater
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Figure 5. Total energy E (kinetic + potential). (a) DNS results: ——, run R0; – - –, run r2; - - -,
run R2; – – – –, run R3. (b) Parameters of run R2, for: ——, DNS; - - - -, EDQNM2 model; – - –,
simplified EDQNM1 model; – – – –, linear approximation (rapid distorsion theory). (c) Parameters
of run R1 for: ——, DNS; - - - -, EDQNM2 model.

than its isotropic counterpart. This surprising result is accounted for by the potential
energy behaviour: a higher transfer of potential energy than of kinetic energy toward
small scales occurs during this first period, as shown in the next subsections. The
same behaviour is well-known to hold for a passive scalar. One argument proposed
by Holloway (1988) is that the nonlinear interactions among the velocity field contain
the subset of two-dimensional interactions, for which transfers toward small scales are
forbidden by the nonlinear conservation of the vorticity (in two dimensions). By con-
trast, no such subset exists among the nonlinear interactions of the temperature field.

The total and isotropic energy levels reverse between one and two Brunt–Väisälä
periods. This is a clear manifestation of the inhibition of nonlinear transfers of energy
by the stable stratification. One way to account for this effect is to notice that, when
N = 0, all triads can be designated as resonant since the frequency of any wavevector
is zero. Hence, any wavevector can exchange its energy within a triad. When N is
non-zero by contrast, the Froude number Frt reaches a value much smaller than 1
(' 0.15) in about one Brunt–Väisälä period (see figure 3). Frt is associated with the
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large scales of the flow, so that the energy at these scales can be considered as being
distributed among weakly interacting gravity waves (coexisting with large-scale vortex
motions, whereof the dynamics are quasi-two-dimensional). This energy should thus
be transferred from large to small scales through mostly resonant, and thus selective,
interactions (Phillips 1977). Another way to account for the inhibition of nonlinear
transfers is to notice that these transfers depend upon the vertical velocity; but the
vertical kinetic energy is converted into potential energy, which is partly involved in
the irreversible process of fluid mixing.

Figure 5 (a) shows that the effects just described are more pronounced when the
viscosity is smaller: the total energy for ν = 1/500 has the lowest level for times
smaller than TBV but the highest level after one Brunt–Väisälä period. This suggests
that some limit behaviour may be reached at infinitely small viscosity. Figure 4 also
shows that viscous effects, if too strong, hide this behaviour, though their general
influence on the flow is to stabilize it, as stratification does.

5.1.2. Comparisons with the EDQNM2 model

The total energy for N = π computed by the DNS and by the EDQNM2 model
is plotted in figure 5 (b). Apart from a 5% maximal overestimation, the prediction of
the EDQNM2 model matches the DNS result very well. These curves lie in between
two other theoretical predictions, by the rapid distortion theory (RDT) and by the
simplified EDQNM1 model discussed in the Introduction. The RDT can be seen as
the linear approximation of the EDQNM2 and EDQNM1 models. The RDT energy
level is well above the DNS level: this demonstrates that the total energy for run R2 is
controlled by nonlinear transfers, despite their weakening by the stable stratification.
By contrast, the level of the total energy predicted by the simplified EDQNM1 model
is below the DNS and EDQNM2 levels; the EDQNM1 energy level actually follows
quite closely that of the non-stratified counterpart flow. This shows that an isotropic
closure assumption is not suitable to model the large-scale behaviour of the flow.

5.2. Kinetic and potential energy

The horizontal and vertical kinetic energies, Eh and Ev , and the potential energy
Ep are plotted versus time in figure 6. The DNS results and the EDQNM2 model
predictions are compared for runs R1 and R2. Eh and Ev are respectively defined by

Eh = 1
2
(u2

1 + u2
2) and Ev = 1

2
u2

3. For a uniform stratification, a good approximation of
the potential energy of the temperature fluctuations (or ‘available potential energy’)
is

Ep = 1
2
T 2/N2 (36)

(e.g. Holliday & McIntyre 1981). The initial levels of Eh, Ev and Ep are dictated by
the initial condition we have chosen:

Ep(t0) = 3
2
Ev(t0) = 3

4
Eh(t0). (37)

This situation contrasts with laboratory experiments by YW and LVA, where Ep is at
most 1% of Ev at the first measuring station (corresponding to ' 0.05TBV ).

A first inspection of the curves in figure 6 reveals a very good agreement between
the EDQNM2 predictions and DNS results. In particular, the decay rate of all three
curves is correctly predicted by the model. A more detailed examination reveals some
discrepancy however. The amplitude of the oscillations for the potential energy and
vertical kinetic energy, which are contributed solely by the wave part of the flow,
is overestimated by the EDQNM2 model. This trend is shared by both flows but is
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Figure 6. Time evolution of the horizontal kinetic energy (top curves), the potential energy (middle
curves), and the vertical kinetic energy (bottom curves); —— DNS; - - - - EDQNM2 model. (a) run
R1; (b) run R2.

more pronounced for run R1. Though hardly visible on the curves presented in figure
6, the amplitude of the oscillations computed by the DNS is also larger for run R1.
One argument is provided below to account for this effect. Figure 6 also shows that
the level of the potential energy is well predicted by the EDQNM2 model while that
of Ev is slightly overpredicted.

The horizontal kinetic energy decays at a lower rate than the two other energies
suggesting that it is associated with larger-scale motions. Also, Eh displays oscillations
of very weak amplitude. Since the vortex part of the flow is solely horizontal, by
definition, this implies that the wave contribution to Eh should remain weak at all
times. We have found that 70 % of Eh is indeed contributed by ΦV , the vortex kinetic
energy. The level of the horizontal kinetic energy is overestimated by the EDQNM2

model, the relative difference reaching 15% after 6TBV for run R1. Note however
that, for a given number of Brunt–Väisälä periods, this run has been carried out over
twice the duration of run R2. Hence, some confinement effect may have arisen in the
DNS for run R1 (that is, the largest scales of the flow, which grow as time elapses,
may become influenced by the domain boundaries). The influence of a confinement
effect is discussed in § 6.
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Figure 7. DNS results. Evolution as a function of dimensional time of; – – – –, the horizontal kinetic
energy; ——, the potential energy; - - - -, the vertical kinetic energy. Left-hand set of curves: run
R1; right-hand set of curves (shifted by one decade toward the right): run R2. All energies are
normalized by their value at the time to stratification is added. A straight line of slope −1 is shown
in between the two sets.

To compare the relative decay of the energy components displayed in figure 6,
we have normalized these energies by their value at t = t0 and plotted them versus
dimensional time t. Results are displayed in figure 7 for the DNS R1 and R2. The
potential energy decays sooner than the kinetic energy components in both runs
for t 6 1 while the vertical kinetic energy does not increase: no buoyancy effect
is thus involved in this behaviour. Rather, strong nonlinear transfers of potential
energy (relative to those of kinetic energy) occur toward small scales during this early
stage. This results in an imbalance between the kinetic energy of the wave ΦW and
its potential energy Ep, which drives a non-zero and positive heat flux. The heat
flux and normalized heat flux are plotted in figure 10 for run R1 and R2 (these
curves are commented on in the next section). Figure 7 also shows that the relative
decay of potential energy is stronger for run R1 than for run R2 because nonlinear
interactions are stronger in the former run than in the latter, N being smaller. Hence
the normalized heat flux should be stronger for the former run than for the latter.
Figure 10 (c) shows that this is indeed the case. This physical process very likely
accounts for the larger-amplitude oscillations in ΦW and Ep observed in run R1
compared to run R2 (see figure 6). Of course, it does not explain why the amplitude
of the oscillations is overestimated by the EDQNM2 model compared to the DNS
results.

The stronger transfers of potential energy toward small scales occur during about
half a Brunt–Väisälä period at the beginning of the simulations. Figure 10 (a) shows
that a strong positive heat flux occurs during this time: vertical kinetic energy is
converted into potential energy to make up for the loss of potential energy by
nonlinear transfers. Consequently, in figure 7, the vertical kinetic energy initiates a
steeper decrease than the horizontal kinetic energy. This decay remains steeper than
that of the potential energy, instead of oscillating about the same mean value, very
likely because of the higher amount of potential energy at t = t0 (we recall that all
curves are normalized to 1 at t = t0). The normalized heat flux does not exceed a few
percent next (see figure 10 c), so that the decay of the three curves is controlled by
nonlinear transfers toward small scales. A clear hierarchy in these decay rates appears
in figure 7, Eh decaying less than Ep, and Ep less than Ev . From about 2TBV , these
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Figure 8. DNS results. Evolution as a function of dimensional time for: ——, run R0; - - - -, run
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by one decade toward the right): variance of the vertical velocity, u2
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decades toward the right): potential energy Ep.

decay rates follow power laws with exponents close to −1, ranging between −1.1, for
the vertical kinetic energy of run R1, to −0.86, for the horizontal energy of run R2.

The horizontal kinetic energy Eh (' u2
1), twice the vertical kinetic energy (u2

3) and
the potential energy are plotted versus time in figure 8 for runs R1, R2 and R0

(except for the potential energy for the latter run). At t = t0, u
2
1 and u2

3 are the
volume-averaged variance of velocity components of an isotropic flow and are thus
equal.

The behaviour of u2
3 for the stratified DNS results from both nonlinear transfers

toward small scales and linear transfers into potential energy, as just said. In the early

stage of the flow, figure 8 shows that u2
3 quickly departs from the isotropic curve,

due to potential energy conversion, but the decay rate is about the same as for the
isotropic DNS. Thus, buoyancy affects only the largest scale of the flow during that
early stage. The inhibiting effect of buoyancy on nonlinear transfers (which involve
intermediate and small scales) becomes visible from about 2TBV for runs R1 and R2:

the decay rate of u2
3 reduces from this time on. At the end of each DNS, the energy

level has just exceeded that of the isotropic DNS.

Investigating the behaviour of u2
1, we note that the R1 and R2 curves depart

from the R0 curve later in time than for u2
3, from 0.7TBV . The evolution of u2

1 up

to this time seems to be decorrelated from that of u2
3: apart from an imperceptible

and very temporary decrease of u2
1 below the R0 curve, there is no sign of the

striking behaviour of u2
3 and of the potential energy. The same remark is made by

LVA (p. 83) from their experimental results. From 0.7TBV , the decay rates of u2
1

become strongly dependent upon the value of N however, much more than for u2
3.

Because 70% of Eh is contributed by the vortex mode, this suggests that another
mechanism is responsible for the inhibition of energy transfer toward small scales:
as already noted by previous authors, the vortex mode may be associated with two-
dimensional motions transferring their energy predominantly toward large scales.
‘Two-dimensional motions’ should be understood here as motions lying more or less
on isopycnal surfaces but depending upon the vertical direction, along which they are
weakly correlated.



318 C. Staquet and F. S. Godeferd

0 2

N (t – t0)/2p

0.6

–Lb

LT

4 6

1.0

0.5

0.9

0.8

0.7

Figure 9. Time evolution of the ratio Lb/LT . ——, DNS of run R1; – – – –, DNS of run R2;
- - - -, EDQNM2 model for run R2.

The experimental results of LVA and YW, obtained over ' 0.8TBV , display the same

features as ours. The temporal evolution of u2
1 for four different values of N remains

close to the isotropic behaviour (with a lesser decay in YW experiments) while a

strong scattering of the u2
3 curves, with slope steeper than the isotropic behaviour, is

obtained. In the most stable experiment of YW, u2
3 eventually increases because of a

net counter-gradient heat flux. No such effect occurs in our DNS.

5.3. Overturning and buoyancy length scales

The ratio of the vertical kinetic energy to the potential energy can be expressed as
the square of the ratio of two length scales: the buoyancy length scale defined by
equation (31) and an overturning length scale

LT = (T 2)1/2/N2. (38)

These scales are commonly used in laboratory experiments to characterize the flow
dynamics. In the grid turbulence experiments of YW and LVA, the ratio Lb/LT is
always greater than 1, starting from a value of order 10 (depending upon the initial
Froude number) and decaying smoothly toward 1. This is because the vertical kinetic
energy is always greater than the potential energy. Our initial condition imposes
a quite different behaviour on this ratio (figure 9): Lb/LT remains smaller than 1

always, starting from a value of
√

2/3 (see relation (37)) and decreasing by 20%
over the whole duration of the runs. This decrease attests that more vertical kinetic
energy is converted into potential energy than potential energy into kinetic energy, as
already noted. A constant mean level close to 2/3 seems to be reached from about
1.5TBV . The EDQNM2 model catches quite well the mean behaviour observed for
Lb/LT , apart from an overestimation of the amplitude of the oscillations.

Recent analytical results using RDT by Hanazaki & Hunt (1996) have also pre-
dicted that Lb/LT should reach an asymptotic value, at infinite time, but equal to√

2/3. This result, as all of those obtained by Hanazaki & Hunt (1996), is based upon
the assumption that the velocity and temperature fluctuations have isotropic spectra.
While this is the case in our calculations at t = t0, we have shown that the RDT is
not able to predict the flow behaviour, our initial condition being designed so as to
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minimize linear effects. Moreover, due to our choice of the potential energy at t = t0,
Lb/LT starts from the asymptotic value

√
2/3 predicted by the RDT. We still note

that the final value reached by this ratio in our calculations is lower by only 20%
than the RDT prediction.

5.4. Heat flux

The volume-averaged heat flux computed by the DNS and by the EDQNM2 model
is plotted in figure 10 (a) for run R2. Note that −u3T is plotted. The heat flux first
decreases down to zero during 0.1TBV and becomes slightly counter gradient, very
likely because the potential energy is 1.5 larger at t = t0 than the vertical kinetic
energy. The heat flux dramatically increases next, signalling that the transfers of
potential energy toward small scales have been initiated: large-scale vertical kinetic
energy is converted into potential energy. At about 0.5TBV , rising fluid particles
do not have enough kinetic energy to continue their ascent and fall back toward
their equilibrium position, leading to a (weakly) negative counter-gradient flux. The
amplitude of the oscillations drops from about 2TBV : the vertical scales of the flow
collapse from this time on (this event will be confirmed by subsequent analysis of the
flow). Note that the net heat flux over the whole simulation is down gradient.

The normalized heat flux (correlation coefficient between the vertical velocity and
the temperature fluctuation) is plotted in figure 10 (b). Its value is close to 0 at
t = t0 because the vertical velocity and temperature field are decorrelated at that time
(through the random realization of the temperature phases). Its maximal absolute
amplitude is about one order of magnitude smaller than in wind tunnel experiments
(of order 0.7 in the latter case, the temperature first behaving as a passive scalar).
Unlike laboratory experiments also, the amplitude of the oscillations stays about the
same as time elapses, being equal to a few times 0.01 (it falls below 0.03 after 2TBV ).
As stated above, we designed our initial condition so as to minimize this correlation
coefficient. This coefficient displays oscillations at a well-defined frequency, nearly
equal to 2N. This result has been predicted rigorously from RDT by Hanazaki &
Hunt (1996, equation (4.47)). According to equation (20), the heat flux is mostly
contributed by large-scale motions (since the largest values of Ψ (k) are reached
at those scales), with which the wavevector makes an angle θk with vertical. The
frequency of these motions being close to N, as just seen, they consist of large-scale
internal waves that propagate almost horizontally. Note that the amplitude of the
correlation coefficient varies in time, possibly because of interactions between these
large-scale waves.

The EDQNM2 model predicts rather well the behaviour of the heat flux (figure 10 a).
In particular, the frequency of the oscillations is the same as in the DNS (recall that
no attention should be given to the relative phase of the oscillation). The amplitude
of the oscillations is about correct though it decreases too regularly compared to
the DNS behaviour. However, when the correlation coefficient is considered (figure
10 b), the amplitude of the oscillations appears to be overpredicted by the model:
from 2TBV , the maximum amplitude is three times too high. This indicates that the
EDQNM2 model does not proceed to a great enough decorrelation between the
vertical velocity and the temperature fluctuation. However, the correlation coefficient
is very small, less than 0.06, both in the DNS and in the EDQNM2 model. It is very
likely that, from a physical point of view, only this smallness matters and that the
overestimation by the EDQNM2 model is not dynamically significant.

The predictions of the heat flux and of the correlation coefficient by the RDT are
also plotted in figures 10 (a) and 10 (b) respectively. Their values are nearly zero at
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Figure 10. (a) Vertical heat flux for run R2 and (b) Normalized heat flux for run R2. ——, DNS;
- - - -, EDQNM2 model; – - –, RDT. (c) DNS results only: normalized heat flux. ——, run R1; - - - -,
run R2.

any time, which confirms that nonlinear terms control the evolution of the large-scale
flow in the DNS and in the EDQNM2 model. Hence, the linear model does not
predict correctly the flow behaviour.

5.5. Similarity law for the vertical kinetic energy

In LVA’s paper, the vertical kinetic energy is plotted for experiments having different
values of N (their figure 6) and a rather strong scattering appears when the curves
are displayed as a function of real time. LVA were able to make the curves collapse
on a single one by normalizing the vertical kinetic energy by its isotropic counterpart,
to eliminate viscous effects (supposing cumulative viscous effects are the same in
the isotropic and non-isotropic flows) and by plotting the normalized vertical kinetic
energy against t/TBV (their figure 7). The fact that a similarity law is obtained
indicates that the vertical kinetic energy decay is driven by cumulated buoyancy
effects.

We have applied the same normalization process to the vertical velocity of runs
r1, r2, R1 and R2. The normalized vertical kinetic energies are plotted as a function
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Figure 11. (a) DNS results. Vertical kinetic energy EN 6=0
v for different stratified calculations, normal-

ized by the instantaneous isotropic counterpart EN=0
v , over 6TBV . - - - -, run r1; – - –, run r2; – – – –,

run R1; —— run R2. (b) DNS. Same as (a) except that the inverse ratio EN=0
v /EN 6=0

v is plotted,
over one Brunt–Väisälä period only. (c) Same as (a), but for the EDQNM2 model.

of (t − t0)/TBV on figure 11 (a): all curves collapse on a single one, at least up to
3TBV . As already shown in § 4.2, we ignore the phase difference in the oscillations,
which is inherent in the random realization used to initiate deterministic velocity and
temperature fields.

To compare this behaviour over the first Brunt–Väisälä period with LVA’s result,
we adopt the same representation as these authors. In figure 11 (b) is thus plotted
the inverse of the normalized kinetic energy up to one Brunt–Väisälä period. We first
note that the curves in figure 11 (b) display the same qualitative behaviour but differ
in level. This indicates that the flow dynamics are not quite governed by buoyancy
effects. The common behaviour displayed by all four curves is still analogous to
LVA’s result. Thus, as in the experiments, the vertical kinetic energy first decays
at the unstratified rate during 0.1TBV (passive behaviour); the curves next increase
and reach a maximum value at about 0.5TBV . This maximum value corresponds
to the maximum loss of vertical kinetic energy through conversion into potential
energy. This loss amounts to at most 30% of the initial vertical kinetic energy. In
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the experiment, it is equal to 60% of the vertical energy just behind the grid; there
is very little potential energy in the initial grid turbulence and vertical kinetic energy
provides the only source of potential energy. In our situation, a large reservoir of
potential energy is available. These results show that, in our case, nonlinear transfers
of potential energy toward small scales drive a rather strong loss of vertical kinetic
energy. In the experiment of LVA as well as in figure 11 (b), the curves next slightly
decay and reach a plateau: the vertical kinetic energy decays again at the unstratified
rate, but has a lower value than at t = t0 (its normalized value is equal to ' 1.35 in
the present case and to 2 in the most stable run of LVA’s experiments). LVA next
observed an increase of the similarity function for their most stable run, which they
relate to the presence of active buoyancy forces at all scales of motions. Figure 11 (a)
shows that this is indeed the case: the plateau is followed by an increase of the curves.
More precisely, the plateau extends more or less up to ' 1.5TBV , that is, up to the
time the vertical scales collapse. The rate of decrease of the vertical kinetic energy is
reduced from this time on, leading to an increase of the curves in figure 11 (a).

The same normalization process has been applied to the vertical kinetic energy
calculated by the EDQNM2 model. The initial stage until one Brunt–Väisälä period
is not very well reproduced by the model, mainly because the amplitude of the
oscillations is overestimated by the model, which hides this earlier behaviour (figure
11 c). From one Brunt–Väisälä period however, the EDQNM2 model reproduces
closely the similarity law stemming from the DNS.

It follows that, from one Brunt–Väisälä period, the vertical kinetic energy can be
easily modelled. From figures 11 (a) and 11 (c), one gets

EN 6=0
v (t)

EN=0
v (t)

= 0.09

(
N

2π
(t− t0) + 6.9

)
. (39)

Since the unstratified vertical kinetic energy in our DNS behaves as EN=0
v (t) =

0.6 t−1.38, the vertical kinetic energy for the stratified runs can be modelled as

EN 6=0
v (t) = 0.054 t−1.38

(
N

2π
(t− t0) + 6.9

)
. (40)
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The same normalization process has been applied to the horizontal kinetic energy
(figure 12). Three stages can be distinguished. The horizontal kinetic energy decays
at the isotropic rate up to 0.7TBV , as we already noted from figure 8 (we still observe
that, for runs r1 and R1, Eh decays slightly more than the isotropic rate: some
transfers into vertical kinetic energy by pressure–velocity correlation should occur).
From 0.7TBV , the decay rate of Eh starts to decrease, compared to the isotropic
decay, signalling some influence of buoyancy effects. The normalization of the data
shows that, apart from viscous effects, the decrease of the horizontal kinetic energy
is accounted for by the cumulated effect of buoyancy effects, up to 2TBV : the four
curves remain close up to this time. These four curves start to separate next, and Eh
eventually reaches values up to 2.5 greater than the isotropic level. This is in contrast
to the behaviour of the vertical kinetic energy, which hardly exceeds the isotropic
value after 6TBV . This indicates that both energies are associated with distinct scales,
small ones for Ev and large ones for Eh. Figure 12 thus shows that the large-scale
horizontal vortex motion starts emerging from turbulence from 2TBV .

5.6. Dissipation rate of the kinetic energy

The dissipation rate of kinetic energy is plotted versus dimensional time (t) in figure
13 (a) for runs R0, R1 and R2. All three quantities follow the same isotropic law up to
t ' 1. The stratified dissipation rates next decrease more strongly than the isotropic
dissipation rate and thus depart from the R0 curve: the nonlinear transfer of potential
energy toward small scales indirectly accounts for this behaviour, in depleting the
kinetic energy reservoir at large scales. Both stratified dissipation rates next again
follow the isotropic decay rate, indicating that the smallest scales of the flow are not
affected yet by stratification. A sudden change in these decay rates occurs for run R2
at t− t0 = 3, i.e. at 1.5TBV , and for run R1 at t− t0 = 6, i.e. at 1.5TBV also. Hence, the
collapse of the vertical scales that occurs at that time very likely results in all scales
of motions, up to the smallest ones, being influenced by buoyancy. Both stratified
dissipation rates eventually become larger than the isotropic one.

The fact that the stratified dissipation rates become driven by buoyancy after the
collapse invites one to employ the same normalization as in the previous section. This
is done in figure 13 (b), for runs r1, r2, R1 and R2. The scenario just described from
figure 13 (a) is successively manifested in figure 13 (b) as (i) a constant initial level,
during a very short time; (ii) a decrease of the curves, which shows that the loss of
vertical kinetic energy through conversion into potential energy leads to a 20% to
30% lower value of the stratified dissipation rate compared to the isotropic case; (iii)
and a plateau, up to 1.5TBV . An analogous behaviour can be inferred from figure 9
of LVA (up to 0.8TBV ), the stratified dissipation rate for their most stable experiment
reaching a value 60% lower than the isotropic value however. Coming back to figure
13 (b), we note that the four curves increase from about 2TBV and closely follow a
common law. The corresponding similarity function can be easily modelled:

εN 6=0(t)

εN=0(t)
= 0.163

(
N

2π
(t− t0) + 2.92

)
with εN=0(t) = 0.44(t− 0.55)−2.3. (41)

Equation (41) shows that εN 6=0 increases with N at large times, which we found in
figure 13 (a).

It is of interest to compare the dissipation rate εN 6=0 to the volume-averaged heat

flux u3T . The ratio of these two quantities is a common measure of instantaneous
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Figure 13. (a) DNS results. Dissipation rate of kinetic energy as a function of dimensional time t.
——, run R0; - - - -, run R1; – – – –, run R2. (b) DNS results. Dissipation rate of kinetic energy εN 6=0

normalized by its instantaneous isotropic counterpart εN=0 as a function of the non-dimensional
time (t − t0)/TBV . - - - -, run r1; – - –, run r2; – – – –, run R1; ——, run R2. (c) Same as (b) but for
the EDQNM2 model.

mixing efficiency used by oceanographers. (Mixing efficiency is defined by the rate at
which potential energy is produced by a given amount of kinetic energy Ek , through
the lifting of cold fluid particles for instance, relative to the rate at which Ek is
dissipated. Note that this definition assumes that all of the potential energy produced
is used for fluid mixing.)

In figure 14 u3T/ε is plotted (with a minus sign) as a function of (t − t0)/TBV
for runs R1 and R2. The EDQNM2 prediction is also plotted for the latter run.
All three curves display precisely the same behaviour over the first Brunt–Väisälä
period: they start from zero, reach a first maximum value of 0.16 at ' 0.3TBV ,
a slightly negative minimum value at 0.6TBV before increasing again. Interestingly,
this behaviour coincides with that obtained by LVA (their figure 10) and by YW
(their figure 26). It is noteworthy that this behaviour is quantitatively obtained in
three situations which differ in the initial condition, whereas stratified flows dynamics
usually strongly depend upon the initial condition. We also note that the maximum
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Figure 14. Ratio of vertical heat flux to dissipation rate of kinetic energy. ——, DNS of run R1;
- - - -, DNS of run R2; – – – –, EDQNM2 model for run R2.

value of 0.16, curiously, is very close to the mixing efficiency measured in the oceanic
thermocline (' 0.2) from ensemble averages.

5.7. Energy in the Craya–Herring modes

In this subsection, we investigate the temporal behaviour of the volume-averaged
kinetic energy of the vortex and wave parts of the flow, which we compare to the
volume-averaged potential energy. This permits the analysis of the energetics of the
flow initiated in the previous subsections to be complemented.

Recall that the vortex part is solely horizontal; thus, the horizontal kinetic energy
Eh(t) contains all of its energy ΦV (t), plus the horizontal component of the kinetic
energy of the wave part. At t = t0, 75% of Eh is contributed by the vortex part;
this contribution slightly decreases and reaches a constant ratio from one Brunt–
Väisälä period, equal to 70% for runs R1 and R2 (as already noted in § 5.2). The
vertical component of the wave kinetic energy is the vertical kinetic energy of the
flow.
ΦV (t), ΦW (t) and Ep(t) are plotted in figures 15 (a) (DNS results) and 15 (b)

(EDQNM2 results) for run R2. The interest of the Craya–Herring decomposition
appears in this figure: the kinetic and potential energy of the wave part now
oscillate about the same mean level, with opposite phases, as expected from a
wave motion. We have shown in figure 6 that the decay rate of potential en-
ergy is well predicted by the EDQNM2 model. Thus, the decay rate of ΦW is
well predicted also since it behaves identically to Ep in figures 15 (a) and 15 (b).
The striking feature of figure 15 is the behaviour of ΦV . First, it does not dis-
play any visible oscillation. This implies that the mathematical Craya–Herring de-
composition into wave and vortex parts has a physical relevance in the present
case. This also implies that no interactions, or very weak ones, occur between the
wave and the vortex parts of the flow. The same remark has also been made
by Métais & Herring (1989) from their 643 direct numerical simulations. Us-
ing perturbation methods, Lelong & Riley (1991) did not find any such inter-
actions at lowest order in the expansions of the velocity and temperature fields,
the Froude number being the small parameter. Secondly, figure 15 shows that the
decay rate of the vortex part is slower than that of the wave part, leading to
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Figure 15. Energy in the Craya–Herring modes for run R2: ——, vortex kinetic energy ΦV ; - - - -,
wave kinetic energy ΦW ; – – – –, potential energy Ep. (a) DNS results; for comparison, the upper
curve – - – reproduces ΦV predicted by the EDQNM2 model. (b) EDQNM2 model.

an energetic domination of the vortex mode. This is consistent with this mode
having a quasi-two-dimensional dynamics, as already noted. Figure 15 (b) shows
that the EDQNM2 model predicts the same behaviour for the vortex part, ex-
cept for an even slower decay rate. Thus the EDQNM2 value differs by 14%
from the DNS value at 6TBV . This discrepancy between EDQNM2 and DNS in
the vortex part accounts for the discrepancies we have pointed out in previous
sections – in the comparison of the Reynolds number plotted in figure 4 (a), of
the total energy plotted in figure 5 (c) or the horizontal kinetic energy plotted in
figure 6 – because the horizontal velocity component comes into play in these
quantities.

To check whether a confinement effect in the DNS is responsible for this discrep-
ancy, we should carry out a simulation analogous to run R2 except that the domain
side, and thus the resolution, would be doubled. This checking becomes possible if
applied to a 1283 DNS such as run r2. We have thus run a DNS of resolution 2563

with domain side 8π (run R4 in table 1), the physical parameters being identical to
those of run r2. We have found (not shown) that the vortex kinetic energy differs
by less than 1.5% between the two runs over 6 Brunt–Väisälä periods. Hence, no
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confinement effect occurs in run r2. Since confinement concerns scales that are the
least sensitive to the viscosity, we conclude that the same result can be applied to
run R2.

5.8. Energy density spectra of the Craya–Herring modes

5.8.1. DNS results

The kinetic energy density spectrum of the vortex part, Φ1(k, t), and of the wave
part, Φ2(k, t) and the potential energy density spectrum Φ3(k, t), are superposed in
figure 16 for run R2. These spectra are spherically averaged for comparison purpose
with the EDQNM2 results. Each spectrum results from an average over one Brunt–
Väisälä period (except when plotted at t = t0). At t = t0, all three spectra coincide
for scales smaller than the scale at which the spectra peak. Some differences can be
noted in the largest scales (figure 16 a), which are simply due to the scarcity of modes
in the spherical shells over which the spectra are averaged. The spectra averaged over
the first Brunt–Väisälä period are also displayed in figure 16 (a). Two major features
can be noted. One is related to the level of the potential energy, which is lowest at
intermediate scales but highest at small scales. This behaviour is a clear manifestation
of the strong transfer of potential energy toward small scales in the very early stage
of the flow. The second feature is related to the level of the vortex energy spectrum,
which is opposite to that of the potential energy spectrum: the vortex part dominates
at large scales and its energy at small scales starts to separate from the wave kinetic
energy. An inspection of these three superposed spectra at successive times during the
first Brunt–Väisälä period reveals that the strong potential energy transfers first set in,
at an inertial time earlier than t− t0 = 1. The reduction in the transfer rates within the
vortex part follows, but on a buoyancy time scale: the vortex spectrum start to differ
at all scales from the wave kinetic energy spectrum from ' 0.5TBV in runs R1 and
R2.

The strong transfer rates of potential energy toward small scales are quickly
weakened by the stable stratification, as already seen, and from two Brunt–Väisälä
periods, the potential energy spectrum almost matches that of the wave kinetic energy.
By contrast, the vortex part kinetic energy remains distinct from the wave part kinetic
energy at all scales, both spectra crossing at k/kmin ' 10 − 15 (figure 16 b, left-hand
set of curves). The fact that the vortex part involves larger scales than the wave part
is demonstrated when viscous effects are increased, because viscous effects have less
damping action on large scales than on the small ones. Thus, in run r1 where the
viscosity is twice as large as in run R1, the vortex part clearly dominates the largest
scales of the flow, up to one tenth of the box side (figure 16 b, middle set of curves).
(The latter effect was also noted in the lower resolution–and thus higher viscosity
– DNS of Métais & Herring 1989.) A higher stratification level also promotes the
large-scale dominance of the vortex mode (figure 16 b, right set of curves). As time
elapses, stratification effects gain importance over nonlinear effects and so also do
viscous effects (the flow being unforced). It follows that, over a long time, the vortex
part should energetically dominate the large scales of the flow in run R1 and, more
generally, in any stratified simulation.

5.8.2. Comparison with the EDQNM2 model.

Instead of presenting the spectra for the EDQNM2 model as in figure 16, we
think it more useful to present a comparison of instantaneous spectra of the vortex
and wave parts between the EDQNM2 model and the DNS, at successive times
(t − t0)/TBV = 0, 1, 3 and 6. Results are presented in figure 17 for run R1 but are
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Figure 16. DNS results. Spherically averaged energy density spectra of the Craya–Herring modes
as a function of k/kmin with kmin = 1/2: ——, vortex kinetic energy spectrum Φ1(k); - - - -, wave
kinetic energy spectrum Φ2(k); – – – –, potential energy spectrum Φ3(k). (a) Run R1. Upper set of
curves: spectra at t = t0; lower set of curves: spectra averaged over the first Brunt–Väisälä period.
(b) Spectra averaged over the third Brunt–Väisälä period. Left-hand set of curves: run r1; middle
set (shifted by two decades toward the right): run R1; right-hand set (shifted by four decades toward
the right): run R2.

similar for run R2. The large-scale behaviour of the wave part spectra, Φ2(k) and
Φ3(k), cannot be compared precisely because the spectra oscillate at these scales and
there are phase differences between the EDQNM2 predictions and the DNS data. In
the small scales, the spectra match rather well. Regarding the vortex part spectra,
the smallest scales predicted by EDQNM2 are less energetic than those computed
by the DNS. This suggests that transfers within the vortex part toward small scales
are too strongly reduced in the EDQNM2 model. This would account for the higher
kinetic energy level at large scales (for k/kmin > 3) predicted by the EDQNM2

model, supposing transfers with the wave part kinetic energy are correctly modelled
(these transfers may however be extremely weak). This result also accounts for the
overprediction of the vortex part kinetic energy in figure 15.
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Figure 17. Instantaneous spherically averaged energy density spectra of the Craya–Herring modes
as a function of k/kmin with kmin = 1/2, for run R1. ——, DNS; - - - -, EDQNM2 model. Upper curve:
t = 0; upper middle curve: t/TBV = 1; lower middle curve: t/TBV = 3; lower curve: t/TBV = 6. (a)
Vortex kinetic energy spectrum; (b) wave kinetic energy spectrum; (c) potential energy spectrum.

5.9. Heat flux spectra

5.9.1. DNS results

The transfers of potential energy toward small scales invite one to study the heat
flux spectrum. The heat flux spectrum is computed as the real part of the correlation
û∗3(k)T̂ (k), averaged over spherical shells to permit comparison with the EDQNM2

model. We have checked however that the same qualitative wavenumber dependence is
obtained whether this spectrum is computed as a function of the vertical wavenumber
or the horizontal wavenumber. The spherically averaged heat flux spectrum is referred
to as F(k) in the following. A negative value of F(k) means that temperature variance
is produced at the expense of kinetic energy at scale k. Physically, cold (resp. hot) fluid
is displaced upwards (resp. downwards) from its equilibrium position. By contrast, a
positive value of F(k) corresponds to a counter-gradient flux: kinetic energy at scale k
is produced at the expense of potential energy. This is the case when fluid particles go
back toward their equilibrium position. The fluid ‘re-stratifies’ then, as it is sometimes
expressed.
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The heat flux spectrum averaged over the first Brunt–Väisälä period for run r1 is
plotted in figure 18 (a): kF(k) is plotted as a function of log(k), as has become usual, to
highlight the small-scale behaviour while getting the net heat flux from the algebraic
sum of positive and negative areas. Note that −kF(k) is plotted. As already seen, the
loss of potential energy at large scales due to nonlinear transfers toward small scales
is partly made up by conversion of vertical kinetic energy at large scales. This leads to
a down-gradient heat flux spectrum at the latter scales, that occurs from t = t0 up to
(t− t0)/TBV ' 0.5. The largest scales of the flow become dominantly counter-gradient
next (figure 18 b) and reverse again at about 0.75TBV , while decreasing in amplitude.
(The shape of the spectrum in figure 18 (a) is thus dominated by the contribution
of the spectra during the first half-Brunt–Väisälä period.) This large-scale oscillatory
behaviour is consistent with the temporal evolution of the volume-averaged heat flux
plotted in figure 10. By contrast, a counter-gradient flux occurs at small scales, for
k/kmin > 20, as a response of the excess of potential energy at those scales (relative
to the equipartition with wave kinetic energy at t = t0). This counter-gradient flux
occurs very early, being already visible at TBV/16. The fact that the minimum value
in the counter-gradient part is located near the cut-off wavenumber in figures 10 (a)
and 10 (b) possibly reflects an insufficient damping by viscosity. Indeed, the minimum
value of the counter-gradient part moves toward smaller k during the second half of
the first Brunt–Väisälä period and the spectral shape about this value smooths. Later
in time, F(k) averaged over each successive period displays oscillations about zero in
the largest scales. By contrast, the spectrum is persistently counter gradient at small
scales, but with an amplitude ten times smaller than the maximal amplitude of the
large-scale oscillations. The range of scales at which F(k) is counter gradient extends
toward smaller wavenumbers over time (the wavenumber at which it vanishes decaying
from 20 to 5, in units of kmin), indicating that the flow progressively relaminarizes.

To get a quantitative estimate of how important these fluxes are relative to the level
of the kinetic and potential energy spectra, we have normalized F(k) by the square root
of the vertical velocity spectrum times the temperature fluctuation spectrum. Each
spectrum is spherically averaged and temporally averaged over the first Brunt–Väisälä
period prior to normalization. The normalized heat flux spectrum thus obtained is
plotted in figure 18 (c). It reaches values up to 10 % in the largest scales and 14 %
(in absolute value) in the smallest scales. Hence, at no scales does the heat flux
significantly influence the flow dynamics. In this sense, the (spherically averaged) heat
flux can be said to be weak at all scales. Regarding the smallest scales, the 14 %
contribution (at most) explains why the dissipation rate decays at the same rate as
its isotropic counterpart during the first Brunt–Väisälä period. By contrast, we have
found that, during the second Brunt–Väisälä period, the normalized heat flux reaches
40 % (in absolute value) at small scales; this is in agreement also with figure 13 (a),
which shows that the dissipation rate is influenced by buoyancy effects from ' 1.5TBV .

The oscillation about zero of the heat flux spectrum at large scales in strongly
stratified flows has already been mentioned by several authors (e.g. Gerz & Schumann
1991; Gerz & Yamazaki 1993), for different Prandtl numbers and for initial conditions
of either no (or little) potential energy or no kinetic energy. The existence of a
persistent counter-gradient heat flux at small scales is also a feature of stratified flows
and the role of the molecular Prandtl number and of the Reynolds number upon this
flux is discussed in Gerz & Schumann (1991, 1996) or Komori & Nagata (1996) for
instance.

In LVA’s and YW’s experiments, only a very weak counter-gradient flux, relative
to the level of the flux at large scales, can be detected. This weakness has been
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Figure 18. (a) Vertical heat flux spectrum F(k) for run r1 as a function of k/kmin. F(k) is averaged
over spherical shells of radius k and over the first Brunt–Väisälä period: ——, DNS results;
- - - -, EDQNM2 model. (b) DNS results for run r1. Instantaneous vertical heat flux spectrum, at
N(t − t0)/2π = 0.56. (c) DNS results for run r1. The vertical heat flux spectrum is normalized by
the square root of the spectrum of the vertical velocity, W (k) times the spectrum of the temperature
fluctuation, 2 N2Φ3(k). All three spectra are spherically averaged and temporally averaged over one
Brunt–Väisälä period prior to normalization.

attributed by previous authors to the Prandtl number (equal to 0.7) being smaller
than 1, because temperature fluctuations are diffused faster at small scales than
velocity fluctuations. We have found that, during the first Brunt–Väisälä period, the
buoyancy flux has no dynamical influence on the small-scale behaviour, as in LVA’s
experiments. A difference with these experiments however concerns the instant at
which this counter-gradient heat flux sets in. In the calculations reported in the
present paper, it occurs nearly from the beginning of the stratified flow evolution. By
contrast, it develops from ' 0.5TBV in LVA’s and YW’s laboratory experiments. To
check the dependence of this time upon the initial condition, we have performed two
direct numerical simulations for N = π and N = π/2, with no potential energy at
t = t0. We have found that a counter-gradient heat flux also develops at small scales,
but from ' 0.5TBV , as in LVA’s and YW’s laboratory experiments (see also Gerz &
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Schumann 1991). Thus, the dynamical importance of the counter-gradient heat flux
over the first Brunt–Väisälä period may depend upon the Prandtl number but the
time of its occurrence is controlled by the initial condition.

5.9.2. Comparison with the EDQNM2 model

The heat flux spectrum computed by the EDQNM2 model is also displayed in
figure 18. This spectrum results from a temporal average over the first Brunt–Väisälä
period as well. The large-scale behaviour, up to the wavenumber where the spectrum
vanishes (k ' 20) is remarkably well predicted by the EDQNM2 model. In particular,
the maximal amplitude is correct and both spectra vanish at the same wavenumber.
The EDQNM2 spectrum also displays a counter-gradient part, at small scales, so
characteristic of the earlier behaviour of the flow. However, the largest absolute value
of the counter-gradient region is almost eight times smaller than its DNS counterpart.
The insufficiency of the viscous damping in the DNS cannot fully account for this
discrepancy and the inability of the EDQNM2 model to decorrelate the vertical
velocity from the temperature fluctuation, as already seen, is very likely responsible
for this behaviour.

6. Confinement effects
If kinetic energy is injected at a larger scale than in the calculations presented

in this paper, the size of the computational domain being unchanged, the Reynolds
number based upon the Taylor microscale increases. The advantage is that viscous
effects have less influence upon the flow dynamics; the effect of nonlinearity and
buoyancy can thus be better estimated. The drawback is that the largest scales of
the flow become affected sooner by the finite size of the computational domain. The
consequences of such a confinement upon the flow dynamics are now addressed.

The maximum wavenumber of the kinetic energy spectrum initiating the stratified
calculations can be identified with the mesh size M of the grid used in laboratory
experiments. Of course, M has to be compared with the size of the computational
domain in the DNS and with the size of the tank in laboratory experiments. In the
latter case, only the ratio of M to the lateral extent is of relevance since fluid motions
are transported at a constant velocity along the channel and are physically confined
by the restoring force along the vertical direction. This ratio is equal to 11.3 for the
largest mesh size in the experiments of LVA and to 36 in those of YW (in which a
single mesh size is used). In the calculations presented in the previous section, this
ratio is equal to 9 at t = t0 and we found that no confinement effect exists up to 6
Brunt–Väisälä periods, for N = π, when temporal evolution of energy components
are considered (see the end of § 5.7).

To investigate how confinement modifies the flow dynamics, we have carried out a
DNS analogous to run R2 except for the domain side, which was reduced by a factor
2 (run c2 in table 1; note that the isotropic pre-simulation is also different). Since the
total energy is contributed by the largest scales, this quantity is most sensitive to a
confinement effect. The total energy of run R2 and run c2 are superposed in figure 19.
The curves depart very soon, from 0.5TBV and the relative difference reaches 20% at
6TBV . To investigate the origin of this difference, the energy of the vortex and wave
parts is displayed in figure 20 for run c2 (and in figure 15 a for run R2). Two striking
differences appear. First, in the confined DNS c2, the vortex part decays at the same
rate as the wave energy while, as already seen, this decay rate must be lower. The
mean level of the wave energy is the same in runs R2 and c2, however. Thus, the
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Figure 20. DNS results. Energy in the Craya–Herring modes for run c2.: ——, vortex kinetic
energy ΦV ; - - - -, wave kinetic energy ΦW ; – – – –, potential energy Ep.

discrepancy in the vortex behaviour accounts for the discrepancy in the total energy
observed in figure 19. Secondly, from about 2TBV , the amplitude of the oscillations
in the wave kinetic and potential energies is higher in the confined DNS than in run
R2 (this leads to an amplitude of the normalized heat flux four times higher). As
shown by van Haren (1993), this effect has to be attributed to the misresolution of
the largest scales of the flow in run c2 as time elapses.

7. Discussion and conclusions
The purpose of this paper is to perform a careful comparison between a two-

point closure statistical anisotropic model of the EDQNM type (EDQNM2 model)
and high-resolution 2563 direct numerical simulations (DNS), for homogeneous tur-
bulence subjected to a stable stratification. This EDQNM2 model departs from
previous attempts (e.g. Holloway 1979; Carnevale & Frederiksen 1983; Sanderson et
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al. 1991) by dealing with axisymmetric spectra about the vertical direction and by the
anisotropy being taken into account both in the closure assumption and in the spectra
(the latter depending upon both the modulus of the wavevector and its angle with
the vertical direction). The ability of the closure assumption to correctly reproduce
the flow dynamics described by the DNS is evaluated by choosing a specific initial
condition: the potential energy is half the kinetic energy, the fluctuating temperature
field being isotropically distributed and the velocity field being (approximately) that of
a homogeneous isotropic turbulence. This initial condition leads to a very small (less
than 3 %) correlation between the temperature fluctuation and the vertical velocity
throughout the calculations. The flow dynamics are thus mainly driven by nonlinear
interactions, at least during the first Brunt–Väisälä period or so, and therefore, are
very sensitive to the closure assumption. Calculations have been conducted over 6
Brunt–Väisälä periods.

A remarkable agreement between EDQNM2 predictions and DNS is found in
general. One exception concerns the ‘vortex’ kinetic energy of the flow, which is
associated with non-divergent horizontal motions (this vortex part mostly contributes
to the horizontal kinetic energy). However, the relative difference between the DNS
result and EDQNM2 prediction reaches 14 % only after 6 Brunt–Väisälä periods, the
EDQNM2 model overpredicting the vortex kinetic energy. We have checked that this
discrepancy is not due to any confinement effect in the DNS. We have found that
when energy is injected at a scale greater than or equal to one-fifth of the side of
the computational domain a confinement effect appears, that modifies the dynamics
of the largest scales of the flow and, thus, of the vortex mode. Another discrepancy
between EDQNM2 predictions and DNS results is related to the normalized heat
flux: insufficient decorrelation between the vertical velocity and the temperature
fluctuations is observed in the EDQNM2 model. The normalized heat flux being only
a few percent however, this inadequacy of the model has no dynamical implication.

The comparison between EDQNM2 predictions and DNS results was performed
throughout a detailed analysis of the flow dynamics. This analysis was closely con-
nected with the experimental works by Lienhardt & Van Atta (1990) and Yoon &
Warhaft (1990), respectively referred to as LVA and YW in the text. We have found
that the flow dynamics are controlled by potential energy being transferred from large
to small scales at a higher rate than kinetic energy, during the first Brunt–Väisälä
period. This behaviour is well-known to hold also for a passive scalar (e.g. Lesieur
1990) and was observed in stably stratified flows by Holloway & Ramsden (1988). In
our calculations, this behaviour has important consequences: the total energy decays
at a higher rate than its isotropic counterpart during the first Brunt–Väisälä period.
Also, vertical kinetic energy appears to be converted into potential energy at the very
beginning of the calculation, to make up for the irreversible transfer of potential
energy toward small scales. This conversion of vertical kinetic energy into potential
energy, despite the fact that there is more potential energy than vertical kinetic energy
at t = t0, yields analogies with laboratory experiments, in which there is very little
potential energy behind the grid. Thus, in LVA’s experiment, 60% of the vertical
kinetic energy is used to create potential energy, against 30% in our calculations.
This factor 2 only indicates how important to the flow dynamics is the high rate
of potential energy transfers. Also, we find that the vertical kinetic energy displays
a similarity law as in LVA’s experiment, with the same shape but different level.
Another consequence is that the potential energy transferred at small scales drives
a counter-gradient heat flux at those scales, that occurs from the beginning of the
calculation and persists throughout the calculations. This flux appears however to
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play no dynamical role on the smallest scales during the first Brunt–Väisälä period.
The same result is observed in LVA’s experiments, in which the counter-gradient heat
flux at small scales is insignificant. The existence of a persistent counter-gradient
heat flux at small scales has already been noted by several authors, in numerical and
laboratory experiments on stratified turbulence (Gerz & Schumann 1996; Komori &
Nagata 1996), as well as in two- and three-dimensional numerical experiments on
breaking gravity waves (Holloway & Ramsden 1988; Bouruet-Aubertot, Sommeria &
Staquet 1996).

It is noteworthy that the horizontal kinetic energy remains nearly unaffected, over
0.7TBV , by the processes just described. That the horizontal kinetic energy exhibits
such an independent behaviour was also observed by LVA, YW and Komori &
Nagata (1996) in their wind-tunnel laboratory experiments.

Our calculations simulate a longer evolution of the flow dynamics than laboratory
experiments, in which the flow develops for at most one Brunt–Väisälä period. We
find that the flow dynamics are marked by a second event at about 1.5TBV . At large
scales, the heat flux collapses; also, the ratio Lb/LT (proportional to the square root
of the vertical kinetic energy over the potential energy) reaches a constant value
(equal to 2/3); as well, large-scale energetic horizontal motions, forming the vortex
part of the flow, emerge from turbulence. At smaller scales, the vertical kinetic energy
and, especially, the dissipation rate of kinetic energy display a similarity law for
different values of N and ν. This law indicates that these quantities are controlled by
buoyancy effects. We thus find that the heat flux collapses at the same time that the
dissipative, and thus smallest, scales of the flow are dominated by buoyancy forces.
One explanation is that the collapse of the largest scales, in insufficiently feeding the
smallest scales with energy, makes them sensitive to the buoyancy force. In other
words, these smallest scales become anisotropic from 1.5TBV . LVA found that the
smallest scales remain nearly unaffected by buoyancy forces over the whole duration
of the flow (' 0.8TBV at most), which is consistent with our results.

A remarkable point of our study is that only one quantity behaves identically in
our DNS, in the EDQNM2 model and in LVA’s and YW’s experiments. This is the
ratio of the dissipation rate of kinetic energy to the heat flux. This ratio quantifies the
instantaneous mixing efficiency and oscillates identically, below the maximum value
of ' 0.2, in all fours sets of data. Thus, this quantity seems to be independent of
initial conditions.

The organization of a stably stratified flow into quasi-horizontal motions, besides a
field of internal waves, is a common feature of stably stratified flows (e.g. Lin & Pao
1974; Riley et al. 1981; Herring & Métais 1989; Fincham et al. 1996). We have found
that the energetic dominance of these motions is the more pronounced the larger N
and the viscosity ν. The existence of a two-dimensional dynamics for such motions
was investigated by Herring & Métais (1989) for forced stably stratified turbulence,
through the search for an inverse cascade. A degree of inverse cascade to large scales
was found but with no k−5/3 range. Numerical and physical arguments are provided
by those authors to account for these results.

Our work offers interesting perspectives. While an increase of the resolution by
only a factor 2 in the DNS is nearly inaccessible, the maximum wavenumber in the
EDQNM2 model can be multiplied by a factor 10 and the code still be run. The
good validation of the EDQNM2 model demonstrated in this paper, at least for the
wave part of the flow, thus permits us to envisage with confidence calculations at
higher Reynolds numbers, even higher than those of laboratory experiments. The
investigation of the smallest-scale motions, which are mostly contributed by the wave
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part of the flow, would be of great interest. How does their anisotropic behaviour
depend upon the Reynolds number? An answer to this question would have important
implications for the subgrid-scale modelling of stably-stratified flows.

Another important implication of high-Reynolds-number studies, affordable with
the EDQNM2 model, is related to energy spectra. In geophysical flows, measurements
of velocity and especially temperature fluctuations at small scales (not affected by
Earth’s rotation) collapse to a unique form (αN2k3

z ) when their variance spectrum is
plotted as a function of the vertical wavenumber kz (e.g. Gregg 1989, for the ocean;
Hostetler & Gardner 1994, for the stratosphere). No such spectra are obtained in our
calculations. In geophysical flows, these spectra are most often interpreted as resulting
from internal gravity wave breaking and recent direct (two-dimensional) numerical
simulations of breaking gravity waves by Bouruet-Aubertot et al. (1996) were able to
reproduce them. In the simulations performed by those authors, the turbulent regime
results from mostly resonant and, next, mostly non-resonant interactions among
waves, that lead to localized breaking as soon as the local Froude number exceeds
a value of order 1. The reason why our data do not collapse on such spectra may
be due to the low value reached by the Reynolds number at the time interacting
internal waves have set up at the largest scales. A high-Reynolds-number EDQNM2

calculation would thus be extremely valuable to investigate this point. Also, it would
be desirable that experimental energy spectra as a function of the vertical wavenumber
be available to complement this discussion.

This work benefited from discussions with Claude Cambon. Calculations have been
performed on the Cray C98 of IDRIS (CNRS computer center), thanks to computing
time allocated by the Scientific Council of IDRIS. We thank Gilles Grasseau from
IDRIS, for his help in improving the performance of the code.

Appendix. Full energy transfer terms for the EDQNM1 and EDQNM2

models
The fully nonlinear transfer terms for the EDQNM1 and EDQNM2 models dis-

cussed in the paper are given in this Appendix, as can be found in Godeferd (1994).
The easiest and soundest way of numerically time solving the system of equations (21)–
(24) is to use the sum and difference of the wave and potential energy variables, as
proposed in § 4.1.2. The energy transfer terms for these variables are therefore

T2(k) +T3(k) = Re
(
TZ1 (k) +TZ2 (k)

)
, (A 1)

T2(k)−T3(k) + ITΨ (k) = −TZ1 (k) +TZ2 (k) , (A 2)

where the TZ1 and TZ2 parts are given below, as well as the T1 transfer term. Re
denotes the real part.

T1(k) =
∑

{ε,ε′ ,ε′′}∈{0,±1}3

−1

(|ε|+ 1)(|ε′|+ 1|)(|ε′′|+ 1)

∫
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τεε
′ε′′

kpq

4

×
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]
×(e|ε|+1(k) · e1(k))

×
{[

(p · e|ε|+1(k))(e|ε
′ |+1(p) · e|ε′′ |+1(q))− (k · e|ε′′ |+1(q))(e|ε|+1(k) · e|ε′ |+1(p))

]
×(Φ|ε

′ |+1(p) + Iε′Ψ (p)− Φ|ε|+1(k)− IεΨ (k))(Φ|ε
′′ |+1(q) + Iε′′Ψ (q))
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+
[
εε′(k · e|ε′′ |+1(q))(Φ3(p)− Iε′Ψ (p)− Φ3(k) + IεΨ (k))

×(Φ|ε
′′ |+1(q) + Iε′′Ψ (q)) + εε′′(q · e|ε|+1(k))(Φ3(p)

−Iε′Ψ (p))(Φ|ε|+1(k) + IεΨ (k))
]}

d3p, (A 3)

TZ1 (k) =
∑

{ε,ε′ ,ε′′}∈{0,±1}3

−1

(|ε|+ 1)(|ε′|+ 1|)(|ε′′|+ 1)

∫
k+p+q=0

τεε
′ε′′

kpq

4

×
[
(k · e|ε′ |+1(p))(e2(k) · e|ε′′ |+1(q)) + (k · e|ε′′ |+1(q))(e2(k) · e|ε′ |+1(p))

]
×(e|ε|+1(k) · e2(k) + ε)

×
{[

(p · e|ε|+1(k))(e|ε
′ |+1(p) · e|ε′′ |+1(q))− (k · e|ε′′ |+1(q))(e|ε|+1(k) · e|ε′ |+1(p))

]
×(Φ|ε

′ |+1(p) + Iε′Ψ (p)− Φ|ε|+1(k)− IεΨ (k))(Φ|ε
′′ |+1(q) + Iε′′Ψ (q))

+
[
εε′(k · e|ε′′ |+1(q))(Φ3(p)− Iε′Ψ (p)− Φ3(k) + IεΨ (k))(Φ|ε

′′ |+1(q) + Iε′′Ψ (q))

+εε′′(q · e|ε|+1(k))(Φ3(p)− Iε′Ψ (p))(Φ|ε|+1(k) + IεΨ (k))
]}

d3p, (A 4)

TZ2 (k) =
∑

{ε,ε′ ,ε′′}∈{0,±1}3

−1

(|ε|+ 1)(|ε′|+ 1|)(|ε′′|+ 1)

∫
k+p+q=0

τεε
′ε′′

kpq

4

×
[
ε′(k · e|ε′′ |+1(q)) + ε′′(k · e|ε′ |+1(p))

]
(e|ε|+1(k) · e2(k) + ε)

×
{[

(p · e|ε|+1(k))(e|ε
′ |+1(p) · e|ε′′ |+1(q))− (k · e|ε′′ |+1(q))(e|ε|+1(k) · e|ε′ |+1(p))

]
×(Φ|ε

′ |+1(p) + Iε′Ψ (p)− Φ|ε|+1(k)− IεΨ (k))(Φ|ε
′′ |+1(q) + Iε′′Ψ (q))

+
[
εε′(k · e|ε′′ |+1(q))(Φ3(p)− Iε′Ψ (p)− Φ3(k) + IεΨ (k))

×(Φ|ε
′′ |+1(q) + Iε′′Ψ (q)) + εε′′(q · e|ε|+1(k))(Φ3(p)

−Iε′Ψ (p))(Φ|ε|+1(k) + IεΨ (k))
]}

d3p. (A 5)

The vectors ei are defined in (5), and the damping associated with each of the eight
triadic interactions is

τεε
′ε′′

kpq =
[
(τkpq)

−1 − iN(ε sin θk + ε′′ sin θp + ε′′ sin θq)
]−1

. (A 6)

In equations (A 3), (A 4) and (A 5), we can identify products of double correlation
spectra, denoting the fact that a quasi-Gaussian assumption has been used for
replacing the third-order correlations. Also, one sees that dot products of the unit
vectors of the local frame appear, these products being related to the geometry of the
triangles k, p, q over which the integrals are computed.

If N is set to zero in (A 6), the closure assumption of the isotropic EDQNM model
is recovered. Using (A 6) with N = 0 in the EDQNM2 model yields the simplified
EDQNM1 model. If, moreover, N = 0 in the left-hand sides of equations (21)–(24)
also, then the isotropic EDQNM model is recovered.
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